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Preface 
This volume contains the extended abstracts submitted to and presented at Automatica.it 2024 
held on September 11-13, 2024 in Bolzano, Italy. 

Automatica.it represents the annual conference of the Società Italiana Docenti e Ricercatori in 
Automatica (SIDRA), which is coordinating the Italian national activities in the field of systems 
and control engineering (disciplinary scientific sector IINF-04/A). 
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 Karl von Ellenrieder 

 



Programme at a glance 

   
 

  

 

 

 
 

8:30-9:00 
Registration (Room: Foyer) 

9:30 - 11:00 
Session 1A:  

Robotics 
(Room: D0.01) 

 

9:30 - 11:00 
Session 1B:  

Vehicles 
(Room: D1.02) 

 

9:00-9:30 
Welcome (Room: D0.01) 

11:00 - 11:30 
Coffee break (Room: Foyer) 

11:30 - 13:00 
Session 2A: Applications 

(Room: D0.01) 
 

11:30 - 13:00 
Session 2B:  

Robotics 
(Room: D1.02) 

 

13:00 - 14:30 
Lunch (Room: Foyer) 

14:30 - 16:00 
Session 3A:  

Control theory 
(Room: D0.01) 

 

14:30 - 16:00 
Session 3B:  

DAuSy session 
(Room: D1.02) 

 

16:00 - 16:30 
Coffee break (Room: Foyer) 

16:30 - 18:30 
Session 4A: Optimization 

(Room: D0.01) 
 

16:30 - 18:30 
Session 4B:  

Control of energy systems 
(Room: D1.02) 

 

18:30 - 20:00 
Cocktail event (Room: Foyer) 

9:00 - 10:30 
Session 5A:  

Machine learning & control 
(Room: D0.01) 

 

9:00 - 10:30 
Session 5B:  

Vehicles 
(Room: D1.02) 

 

10:30 - 11:00 
Coffee break (Room: Foyer) 

9:00 - 10:30 
Session 5C:  

Path planning 
(Room: D1.03) 

 

11:00 - 12:30 
Session 6A: 

Modelling and estimation 
(Room: D0.01) 

 

11:00 - 12:30 
Session 6C:  

Control of actuators 
(Room: D1.03) 

 

12:30 - 14:00 
Lunch (Room: Foyer) 

11:00 - 12:30 
Session 6B:  

Control theory 
(Room: D1.02) 

 

9:00-10:00 
PhD award session  

(Room: D0.01) 

10:00-11:00 
Assembly SIDRA  

(Room: D0.01) 

 
14:00 - 15:30 
Session 7A:  

Energy management in 
vehicles 

(Room: D0.01) 
 

14:00 - 14:45 
Session 7C: Education 

(Room: D1.03) 
 

 
14:00 - 15:30 
Session 7B:  

Computer vision and 
control 

(Room: D1.02) 
 

14:45 - 15:30 
Session 7D: Applications 

(Room: D1.03) 
 

15:30 - 16:00 
Coffee break (Room: Foyer) 

16:00 - 18:00 
Round table: Facts and myths in machine-learning-based control  

(Room: D0.01) 
 

20:00 - 23:00 
Social dinner 

11:00-11:30 
Coffee break (Room: Foyer) 

11:30-13:00 
Assembly SIDRA  

(Room: D0.01) 

13:00-14:30 
Lunch (Room: Foyer) 

Wednesday, September 11th Thursday, September 12th Friday, September 13th 

8:30-9:00 
Registration (Room: Foyer) 

8:30-9:00 
Registration (Room: Foyer) 



 

   
 

Floor maps 

       



 

   
 

Social Dinner 
The social dinner will take place at Restaurant Fink (https://www.gasthausfink.it/) in the city 
centre, Mustergasse 9 / Via della Mostra 9, Bolzano. Start: 8 p.m. 

 

 

  



 

   
 

Detailed Technical Programme 
Wednesday, September 11th 

08:30-09:00 Session: Registration 
09:00-09:30 Session: Welcome (chairs: Angelika Peer, Karl Dietrich von Ellenrieder) 
09:30-11:00 Session 1A: Robotics (chairs: Maria Pozzi, Marco Camurri) 

09:30-09:45 
Dario Calogero Guastella. Experimental Investigation of Multi-Agent Systems with Micro-
robots 

09:45-10:00 
Davide Tebaldi, Giovanni Braglia and Luigi Biagiotti. A Spatial Sampling Algorithm for Encoding 
Geometric Information in Demonstrated Trajectories 

10:00-10:15 
Maria Pozzi, Valerio Bo, Enrico Turco, Leonardo Franco, Gionata Salvietti, Monica Malvezzi and 
Domenico Prattichizzo. Soft Robotic Hands: Embracing Interaction with the Surrounding 
Environment 

10:15-10:30 
Martina Lippi, Michael Welle, Alessandro Marino, Andrea Gasparri and Danica Kragic. Visual 
Action Planning with Multiple Heterogeneous Agents 

10:30-10:45 
Alessandra Elisa Sindi Morando, Alessandro Bozzi, Simone Graffione, Enrico Zero and Roberto 
Sacile. Distributed Nonlinear Rolling Horizon Techniques Applied to Air-Ground Cooperation 

10:45-11:00 Andrea Usai and Alessandro Rizzo. Artificial fear for the control of autonomous robots 
09:30-11:00 Session 1B: Vehicles (chairs: Karl Dietrich von Ellenrieder and Michele Pagone) 

09:30-09:45 
Michele Pagone, Stefano Favelli, Raffaele Manca, Gabriel Jenner de Faria Orsi, Angelo 
Bonfitto, Carlo Novara and Andrea Tonoli. A Nonlinear MPC-based Adaptive Cruise Control for 
Electric Automotive Vehicles 

09:45-10:00 
Ivo Batkovic, Ankit Gupta, Mario Zanon and Paolo Falcone. Experimental Validation of Safe 
MPC for Autonomous Driving in Uncertain Environments 

10:00-10:15 
Mattia Laurini, Irene Saccani, Stefano Ardizzoni, Luca Consolini and Marco Locatelli. A 
Dynamic Programming approach for road traffic estimation 

10:15-10:30 
Bhaskar Varma and Karl Von Ellenrieder. Trajectory optimization of multi robot systems using 
opinion dynamics 

10:30-10:45 
Massimo Canale, Francesco Cerrito, Alessandro Fasiello and Valentino Razza. Enhancing 
Reinforcement Learning for Automated Driving through Virtual Lane Logic 

10:45-11:00 
Davide Tebaldi and Roberto Zanasi. Systematic Modeling of a Steering Vehicle Differential 
Using Power-Oriented Graphs 

11:00-11:30 Coffee break 

11:30-13:00 Session 2A: Applications (chairs: Dario Calogero Guastella and Riccardo Caponetto) 

11:30-11:45 
Michele Coco, Martina Mammarella, Cesare Donati, Federica Paganelli and Francesco 
Evangelisti. Huber-based Unscented Kalman Smoother with application to Earth observation 
missions 

11:45-12:00 
Federico Baldisseri, Danilo Menegatti and Andrea Wrona. Deep Deterministic Policy Gradient 
Control of Type 1 Diabetes  

https://personale.unimore.it/Rubrica/dettaglio/datebaldi
https://personale.unimore.it/Rubrica/dettaglio/228692
https://personale.unimore.it/rubrica/dettaglio/lbiagiotti
https://easychair.org/program/session.cgi?a=33211615&session=87404
https://www.polito.it/en/staff?p=michele.pagone
https://personale.unipr.it/it/ugovdocenti/person/136004
http://www.ce.unipr.it/people/lucac/
https://personale.unimore.it/Rubrica/dettaglio/datebaldi
http://www.dii.unimo.it/%7Ezanasi/zanasi.htm
https://easychair.org/program/session.cgi?session=87396&a=33211615


 

   
 

12:00-12:15 
Chiara Cimolato, Massimo Bellato, Gianluca Selvaggio, Luca Marchetti, Giulia Giordano and 
Luca Schenato. Model Driven Design of Bacterial Communication Inhibition: from Quorum 
Sensing to Quorum Quenching 

12:15-12:30 
Maria Gabriella Xibilia, Luca Patanè, Francesca Sapuppo, Riccardo Caponetto, Marco 
Calapristi, Antonino Maio, Salvatore Graziani and Carlo Trigona. A Multiphysics Framework for 
Bacterial Cellulose Sensor Modeling 

12:30-12:45 
Alessandro Borri, Pasquale Palumbo and Federico Papa. Tumour growth control: analysis of 
alternative approaches 

12:45-13:00 
Gabriel Ferreira, Fabrizio Dabbene, Chiara Ravazzi and Giuseppe Calafiore. Joint Optimization 
for OFDMA Heterogeneous Networks with stochastic channel-gains 

11:30-13:00 Session 2B: Robotics (chairs: Dario Sanalitro and Tommaso Lisini) 

11:30-11:45 
Tommaso Lisini Baldi, Enrico Turco, Chiara Castellani, Valerio Bo and Domenico Prattichizzo. 
Reducing Cognitive Load through a Data-Driven Shared Control Approach for Teleoperating 
Robot Swarms 

11:45-12:00 Dario Sanalitro and Maide Bucolo. Hybrid Brain Computer Interface for Robot Control 

12:00-12:15 
Isacco Zappa, Andrea Maria Zanchettin and Paolo Rocco. Cobots Understanding Skills 
Programmed by Demonstration 

12:15-12:30 
Nicole D'Aurizio, Tommaso Lisini and Domenico Prattichizzo. Human Augmentation: 
Controlling Supernumerary Robotic Limbs via Body Redundancy 

12:30-12:45 
Bernardo Brogi, Giovanni Cortigiani, Nicole D'Aurizio, Alberto Villani, Domenico Prattichizzo 
and Tommaso Lisini. The Avatarm: Interacting in the Physical Metaverse via Robotics, 
Diminished Reality, and Haptics 

12:45-13:00 
Amir Jaberi, Seyed Mohsen Hosseini, Oliver Kutz and Angelika Peer. Robust Optimal Planning 
of Human-Robot Collaborative Operations 

13:15-14:30 Session : Lunch 

14:30-16:00 Session 3A: Control theory (chairs: Carlo Famoso and Alessandro Baldini) 

14:30-14:45 
Mirko Mazzoleni, Luca Maurelli, Simone Formentin and Fabio Previdi. A comparison of 
indirect and direct filter designs from data for LTI systems: the effect of unknown noise 
covariance matrices 

14:45-15:00 
Folco Giorgetti, Francesco Ferrante and Mario L. Fravolini. Anti-Windup-Like Compensator 
Design for Continuous-Time Systems affected by Unknown Nonlinearities and Input Saturation 

15:00-15:15 
Simone Betteti, Giacomo Baggio and Sandro Zampieri. Design and Stability of Dynamical 
Memory Networks: From Hopfield to Firing Rate Models 

15:15-15:30 
Arturo Buscarino, Carlo Famoso and Luigi Fortuna. Analysis and control of synaptic complex 
networks operating at high dimensionality 

15:30-15:45 
Alessandro Baldini, Riccardo Felicetti, Alessandro Freddi, Sauro Longhi and Andrea Monteriù. 
Observer-based residual generator for fault detection and isolation of convex sets 

15:45-16:00 
Riccardo Caponetto, Giovanni Dongola, Salvatore Graziani, Luca Patanè, Francesca Sapuppo 
and Maria Gabriella Xibilia. Hardware In the Loop simulation of PIλDμ controller 

14:30-16:00 Session 3B: DAuSy session (chairs: Raffaele Carli, Mariagrazia Dotoli) 
 Nadia Naz. Analysis of dosimetric parameters of linear accelerator 

http://www.sct.ieiit.cnr.it/fabrizio.dabbene.php
https://publications.cnr.it/authors/chiara.ravazzi
https://easychair.org/program/session.cgi?session=87405&a=33211615
https://www.unisi.it/
https://dsanalit.github.io/
https://www.dieei.unict.it/faculty/maide.bucolo
https://www.deib.polimi.it/ita/personale/dettagli/1052110
http://home.deib.polimi.it/rocco
https://easychair.org/program/session.cgi?session=87397&a=33211615
https://easychair.org/program/session.cgi?session=87399&a=33211615
https://sim1bet.github.io/
https://baggiogi.github.io/
http://www.dii.univpm.it/
http://www.univpm.it/andrea.monteriu
https://easychair.org/program/session.cgi?a=33211615&session=87440


 

   
 

Zohreh Shahrouei and Elio Usai. Management and automation systems for energy 
management in buildings and industrial processes 
Pietro Maria Marvulli, Domenico Buongiorno, Raffaele Carli, Mariagrazia Dotoli and 
Vitoantonio Bevilacqua. Autonomous Intelligent System for Predicting Response to TACE in 
Treating Hepatocellular Carcinoma 
Claudia Delprete, Domenico Buongiorno, Raffaele Carli, Mariagrazia Dotoli and Vitoantonio 
Bevilacqua. Autonomous Intelligent Systems for Polyp Detection and Segmentation in 
Colonoscopy 
Gabriele Gemignani, Margherita Bongiorni and Lorenzo Pollini. An Energy-aware Decision-
making scheme for Mobile Robots on a Graph Map based on Deep Reinforcement Learning 
Valeriana Mancazzo, Elena Sibilano, Antonio Brunetti, Raffaele Carli, Mariagrazia Dotoli and 
Vitoantonio Bevilacqua. Intelligent Systems for Predicting Disability Progression in Multiple 
Sclerosis Using Motor Evoked Potentials and Digital Twin Technology 
Francesco Campregher and Antonio Visioli. Advanced control strategies with applications to 
sustainable bioprocesses 
Mahsa Ghavami, Davide Liuzza, Elisa Mostacciuolo, Luigi Iannelli and Francesco Vasca. A 
mixed-integer charging schedule for electric vehicles with request-dependent pricing 
Vittoria Socci and Chiara Mocenni. An Agent-Based Model to foster Citizens’ Sustainable 
Behavior in the Italian City of Siena 
Mohamed Mahmoud Abdelwahab Mohamed, Giulio Giacomuzzo, Alberto Dalla Libera and 
Ruggero Carli. Adaptive Robust Controller for handling Unknown Uncertainty of Robotic 
Manipulators 
Michela Prunella, Nicola Altini, Paolo Scarabaggio, Raffaele Carli, Mariagrazia Dotoli and 
Vitoantonio Bevilacqua. A quantitative systems biology approach to characterize advanced 
gastric cancer response 
Angelo Accetta, Maurizio Cirrinzione, Silvia Di Girolamo, Filippo D'Ippolito, Marcello Pucci and 
Antonino Sferlazza. Robust Nonlinear Control for Induction Motor Drives Based on Adaptive 
Disturbance Compensation 
Simone Gentile, Danilo Menegatti, Andrea Wrona, Antonio Di Paola and Alessandro Giuseppi. 
Deep Reinforcement Learning Platooning Control of Non-Cooperative Autonomous Vehicles in 
a Mixed Traffic Environment 
Denis Tognolo, Francesco Visentin and Riccardo Muradore. Vision-based Autonomous 
Navigation in Agricultural Rows 
Pierluigi Francesco De Paola, Jared Miller, Alessandro Borri, Alessia Paglialonga and Fabrizio 
Dabbene. A control system framework for counterfactuals: an optimization-based approach 
Amarnath Venkatachalam, Lucia Valentina Gambuzza, Carlo Famoso, Ludovico Minati, 
Giovanni Russo and Mattia Frasca. Recovering the governing equations of nonlinear 
dynamical systems by sparse identification from experimental data 
Sebastiano Taddei, Mattia Piccinini, Edoardo Pagot and Francesco Biral. Artificial Racing 
Coach: teaching humans how to maximize a racing vehicle's performance and drive at its 
limits 
Daniel-Costel Bouleanu, Costin Badica and Giancarlo Fortino. Multi-agent Systems 
Methodologies and Frameworks for Edge-AI in Smart Environments 



 

   
 

Mojtaba Porghoveh, Raffaele Carli and Mariagrazia Dotoli. Drone as a Service in Logistics: a 
Review of Optimization and Control Techniques 
Sara Gomiero and Karl Dietrich von Ellenrieder. Chattering-free Sliding Mode Control for 
Position and Attitude Tracking of a Quadrotor with a Cable-Suspended Load 
Mohammad Jeddi and Paolo Falcone. Safety-driven mixed model and learning-based motion 
planning and control of autonomous systems 
Alessandro Di Biase, Renat Kermenov, Sauro Longhi and Andrea Bonci. Human-robot co-
transport of flexible materials using deformation constraints 
Giulia D'Addato, Daniele Fontanelli and Luigi Palopoli. Socially-Aware Opinion-Based 
Navigation with Oval Limit Cycles for Human-Robot Interaction 
Pietro Bonsanto, Mattia Mattioni, Alessio Iovine, Elena De Santis and Maria Domenica Di 
Benedetto. Mesoscopic digital control for Practical String Stability of vehicular platoons 
Alessandro Giuseppi, Antonio Di Paola, Alessandro Santopaolo, Syed Saad Saif, Federico 
Fiorini and Antonio Pietrabissa. ARIES: An Intelligent System for Landslide and Wildfire Risk 
Management 
Giorgio Manca, Mario Sassano and Sergio Galeani. Enhancing Extended Kalman Filters 
Performance through Covariance Estimation 
Sajjad Miralizadeh Jalalat, Alberto Cavallo and Antonio Russo. Safe Reinforcement Learning-
Based Voltage Control in Nonlinear Power Systems 
Marco Perin, Angelo Cenedese and Francesco Bullo. Adaptive Deep Learning Controller for 
Nonlinear Systems with Contraction Theory 
Paul Christian Tesso Woafo. A novel multiobjective optimal LQ control strategy for energy 
harvesting in vehicle suspension systems 
Anna Tagliaferri, Bajramshahe Shkodra, Martina Aurora Costa Angeli, Mattia Petrelli, Antonio 
Altana, Pietro Ibba, Paolo Lugli and Luisa Petti. Improved stability of carbon-nanotube 
electrolyte-gated field-effect transistor-based sensors 
Lucrezia Manieri, Alessandro Falsone and Maria Prandini. A dual bisection approach to 
economic dispatch of generators with prohibited operating zones 

16:00-16:30 Coffee break 

16:30-18:30 Session 4A: Optimization (chairs: Laura Giarré and Enrico Bertolazzi) 

16:30-16:45 
Seyed Mohsen Hosseini and Angelika Peer. An Adaptive Heuristic Approach to Wood Sawing 
Optimization 

16:45-17:00 
Alessandro Del Duca and Fredy Ruiz. Distributed stochastic optimization with uncertain 
coupling constraint 

17:00-17:15 
Enrico Bertolazzi and Francesco Biral. Solve Optimal Control Problems with an hybrid 
Indirect/Direct method 

17:15-17:30 
Vito Cerone, Sophie M. Fosson, Simone Pirrera and Diego Regruto Tomalino. A control theory 
approach to convex optimization with inequality constraints 

17:30-17:45 
Mattia Alborghetti, Giulio Montecchio, Lorenzo Jr. Sabug, Lorenzo Fagiano and Fredy Ruiz. 
Feedback Control of the Exploitation-Exploration Trade-off in Set Membership Global 
Optimization 

https://marco-perin.com/
http://automatica.dei.unipd.it/people/cenedese.html
https://fbullo.github.io/
https://easychair.org/smart-program/Automaticait2024/person338.html
https://easychair.org/smart-program/Automaticait2024/person339.html
https://easychair.org/smart-program/Automaticait2024/person340.html
https://easychair.org/program/session.cgi?session=87401&a=33211615
https://e.bertolazzi.dii.unitn.it/
https://sites.google.com/site/sophiefosson/
https://sites.google.com/view/pirrera-simone/


 

   
 

17:45-18:00 
Renato Quartullo, Gianni Bianchini, Andrea Garulli and Antonello Giannitrapani. Robust 
Variable-Horizon MPC with Adaptive Terminal Constraints 

18:00-18:15 
Lorenzo Calogero, Michele Pagone and Alessandro Rizzo. Pseudo-Transient Continuation for 
Enhanced Quadratic Programming and Optimal Control 

16:30-18:30 Session 4B: Control of energy systems (chairs: Alessio La Bella and Giulio Ferro) 

16:30-16:45 
Marco Capelletti and Giuseppe De Nicolao. Forecasting Wind Power: A Comparative Study of 
Parametric and Non-parametric Approaches Using Real-World Data 

16:45-17:00 
Luca Schenato, Jiali Wang and Yang Tang. Humans-in-the-Building: Getting Rid of Thermostats 
in Comfort-Based Energy Management Control Systems 

17:00-17:15 
Yassine Ennassiri, Giulio Ferro, Loredana Magistri and Michela Robba. Optimal scheduling and 
real-time control of a microgrid with an electrolyzer and a fuel cell systems using a reference 
governor approach 

17:15-17:30 
Sofia Trombini and Lorenzo Fagiano. On the kite-platform interactions in offshore Airborne 
Wind Energy Systems: Frequency analysis and control approach 

17:30-17:45 
Nicola Mignoni, Juan Martinez-Piazuelo, Raffaele Carli, Carlos Ocampo-Martinez, Nicanor 
Quijano and Mariagrazia Dotoli. A Game-Theoretical Control Framework for Transactive 
Energy Trading in Energy Communities 

17:45-18:00 
Giuseppe Olivieri, Gaetano Volpe, Agostino Marcello Mangini and Maria Pia Fanti. A User 
Based HVAC System Management Through Blockchain Technology and Model Predictive 
Control 

18:00-18:15 
Laura Boca de Giuli, Alessio La Bella and Riccardo Scattolini. Modeling and Predictive Control 
of District Heating Systems via Physics-Informed Recurrent Neural Networks 

18:15-18:30 
Lucrezia Manieri, Alessandro Falsone and Maria Prandini. A dual bisection approach to 
economic dispatch of generators with prohibited operating zones 

18:30-20:00 Cocktail event 

 

Thursday, September 12th 

09:00-10:30 Session 5A: Machine learning and control (chairs: Ciro Natale and Gabriele Costante) 

09:00-09:15 
Marco Calapristi, Luca Patanè, Francesca Sapuppo, Riccardo Caponetto and Maria Gabriella 
Xibilia. Symbolic regression for industrial applications: an NN-based approach 

09:15-09:30 
Paolo Scarabaggio, Nicola Mignoni, Raffaele Carli and Mariagrazia Dotoli. On the Existence of 
Equilibria in Learning-Based Games 

09:30-09:45 
Sampath Kumar Mulagaleti and Andrea Del Prete. Sample Efficient Certification of Discrete-
Time Barrier Functions 

09:45-10:00 
Diego Deplano, Mauro Franceschelli and Alessandro Giua. Stability of Nonexpansive 
Monotone Systems and Application to Recurrent Neural Networks 

10:00-10:15 
Irene Schimperna and Lalo Magni. Stability and constraint satisfaction in Recurrent Neural 
Network based Model Predictive Control 

09:00-10:30 Session 5B: Vehicles (chairs: Gaetano Volpe and Agostino Marcello Mangini) 

09:00-09:15 
Elisa Gaetan, Laura Giarré and Paolo Falcone. Scenario-Based Model Predictive Control for 
vehicle interactions in Highway setting 

https://www3.diism.unisi.it/%7Eanto
https://www.polito.it/personale?p=lorenzo.calogero
https://easychair.org/program/session.cgi?a=33211615&session=87402
https://www.deib.polimi.it/eng/people/details/1103256
https://home.deib.polimi.it/falsone/
https://prandini.faculty.polimi.it/
https://easychair.org/program/session.cgi?session=87408&a=33211615
https://diegodeplano.github.io/
https://sites.google.com/site/conetdomesys/
https://www.alessandro-giua.it/
https://easychair.org/program/session.cgi?a=33211615&session=87411


 

   
 

09:15-09:30 
Erica Salvato, Lorenzo Elia, Gianfranco Fenu and Thomas Parisini. Stop-and-Go Traffic Wave 
Attenuation: A Shared Control Approach 

09:30-09:45 
Stefano Ardizzoni, Mattia Laurini, Rafael Praxedes, Luca Consolini and Marco Locatelli. 
Identification of Cyclists' Route Choice Criteria 

09:45-10:00 
Francesco Paparella, Giuseppe Olivieri, Gaetano Volpe, Agostino Marcello Mangini and Maria 
Pia Fanti. A Deep Reinforcement Learning Approach for Route Planning of Autonomous 
Vehicles 

10:00-10:15 
Antonio Furchì, Martina Lippi, Renzo Fabrizio Carpio and Andrea Gasparri. Route Optimization 
in Precision Agriculture Settings: a Multi-Steiner TSP Formulation 

10:15-10:30 
Diego Deplano, Carla Seatzu and Mauro Franceschelli. A Distributed Online Heuristic for a 
Large-scale Workforce Task Assignment and Multi-Vehicle Routing Problem 

09:00-10:30 Session 5C: Path planning (chairs: Mattia Piccinini and Nicola Mimmo) 

09:00-09:15 
Mattia Piccinini, Simon Gottschalk, Matthias Gerdts and Francesco Biral. Neural Motion 
Primitives for Online Time-Optimal Vehicle Trajectory Planning 

09:15-09:30 
Filip Dyba and Marco Frego. Following Zero-curvature Paths Using the Non-orthogonal Bishop 
Parametrization 

09:30-09:45 
Giordana Bucchioni, Michele Pagone and Carlo Novara. Autonomous Lunar Rendezvous 
Trajectory Planning and Control Using Nonlinear MPC and Pontryagin's Principle 

09:45-10:00 
Mattia Piazza, Enrico Bertolazzi and Marco Frego. Efficient Path Planning Solutions for the 
Three Point Dubins Problem using Non-Smooth Optimization 

10:00-10:15 
Nicola Mimmo, Marco Frego and Angelika Peer. Tracking of Clothoids via Internal Model 
Principle 

10:15-10:30 
Stefano Ardizzoni, Luca Consolini, Mattia Laurini and Marco Locatelli. Time-optimal speed 
planning under jerk constraints 

10:30-11:00 Coffee break 

11:00-12:30 Session 6A: Modelling and estimation (chairs: Simone Guarino and Diego Deplano) 

11:00-11:15 
Vito Cerone, Sophie M. Fosson, Diego Regruto and Francesco Ripa. A Lasso approach to 
secure state estimation for cyber-physical systems 

11:15-11:30 
Camilla Fioravanti, Stefano Panzieri and Gabriele Oliva. Negativizability: a Useful Property for 
Distributed State Estimation and Control in Cyber-Physical Systems 

11:30-11:45 
Rami Katz, Giulia Giordano and Dmitry Batenkov. Data-driven delay estimation in reaction-
diffusion systems 

11:45-12:00 
Matteo Scandella, Alessio Moreschini and Thomas Parisini. Nonlinear Data-Driven Moment 
Matching using RKHS 

12:00-12:15 
Simone Guarino, Ernesto del Prete, Luca Faramondi, Francesco Flammini and Roberto Setola. 
Two novel Frameworks for Cyber-Physical Anomaly Detection in Industrial Control Systems 

11:00-12:30 Session 6B: Control theory (chairs: Lorenzo Zino and Mattia Laurini) 

11:00-11:15 
Matteo Aicardi, Alessandro Bozzi, Simone Graffione, Roberto Sacile and Enrico Zero. 
Distributed Control of a System of Systems via Consensus Alternating Direction Method of 
Multipliers: a Quadruple Tank Application 

11:15-11:30 
Andres Felipe Cordoba Pacheco and Fredy Ruiz. Data-Driven Controller Tuning for MIMO 
Systems: A Set-Membership Approach 

http://www.ce.unipr.it/people/lucac/
https://diegodeplano.github.io/
https://web.unica.it/unica/it/ateneo_s07_ss01.page?contentId=SHD30887
https://sites.google.com/site/conetdomesys/
https://easychair.org/program/session.cgi?a=33211615&session=87412
http://www.ce.unipr.it/people/lucac/
https://personale.unipr.it/it/ugovdocenti/person/136004
https://easychair.org/program/session.cgi?a=33211615&session=87410
https://www.polito.it/en/staff?p=017439
http://www.gabrieleoliva.com/
https://easychair.org/program/session.cgi?a=33211615&session=87413


 

   
 

11:30-11:45 
Marino Pavone, Nicola Epicoco, Giordano Pola and Andrea Manno. Modelling Sensors 
Degradation for Water Quality Monitoring 

11:45-12:00 
Lorenzo Zino, Daniele Vilone, Francesca Giardini and Ming Cao. An opinion dynamics model 
for collective risk perception 

12:00-12:15 
Giulia Di Credico, Luca Consolini, Mattia Laurini, Marco Locatelli, Marco Milanesi, Michele 
Schiavo and Antonio Visioli. PK-PD model identification with a Branch and Bound algorithm 

12:15-12:30 Anton Proskurnikov. Multidimensional Opinion Dynamics with General Confidence Sets 
11:00-12:30 Session 6C: Control of actuators (chairs: Paolo Roberto Massenio and Francesco Ferracuti) 

11:00-11:15 
Paolo Roberto Massenio, Giovanni Soleti, Carmen Perri, Gianluca Rizzello and David Naso. 
Control and Driving Technologies for Soft Robots based on Dielectric Elastomer Actuators 

11:15-11:30 
Gionata Cimini, Riccardo Felicetti, Francesco Ferracuti, Luca Cavanini and Andrea Monteriù. 
Adaptive Reference Governor for DC-DC Converters based on Model Predictive Control 

11:30-11:45 
Davide Tebaldi and Roberto Zanasi. Model-Based Optimal Control of Modular Multilevel 
Converters Using Ideal Capacitor Voltages Reference 

11:45-12:00 
Beatrice Zambotti, Yassine Ariba, Frederic Gouaisbaut and Luca Zaccarian. Modeling and 
control of an impacting electromagnetic actuator via hybrid Lyapunov techniques 

12:00-12:15 
Augusto Bozza, Graziana Cavone, Raffaele Carli and Mariagrazia Dotoli. PWM-Based Energy-
Efficient Adaptive Control for Multi-Chamber Hydraulic Servo Actuators 

12:30-14:00 Session : Lunch 

14:00-15:30 Session 7A: Energy management in vehicles (chairs: Maria Gabriella Xibilia and Luca Patanè) 

14:00-14:15 
Stefano Radrizzani, Giorgio Riva, Giulio Panzani, Matteo Corno and Sergio M. Savaresi. 
Exploiting the potential of hybrid batteries in racing: optimal sizing and energy management 

14:15-14:30 
Alessio La Bella, Gian Paolo Incremona, Aline Cristiane Buzzi and Patrizio Colaneri. Energy 
Management System Based on Model Predictive Control for Battery-Powered Trains Under 
Catenary-Free Conditions 

14:30-14:45 
Luca Ambrosino, Giuseppe Calafiore, Khai Manh Nguyen, Riadh Zorgati, Doanh Nguyen-Ngoc 
and Laurent El Ghaoui. Optimizing electric vehicles charging through smart energy allocation 
and cost-saving 

14:45-15:00 
Luca Patanè, Francesca Sapuppo, Marco Calapristi, Antonino Maio, Antonino Comi, Giuseppe 
Napoli, Riccardo Caponetto and Maria Gabriella Xibilia. Predictive Models for Vehicle-to-Grid 
Available Aggregated Capacity Prediction 

15:00-15:15 
Valerio Brunacci, Alberto Dionigi, Alessio De Angelis and Gabriele Costante. Infrastructure-less 
UWB-based Relative Localization: an Active Approach 

14:00-15:30 Session 7B: Computer vision and control (chairs: Nicole D'Aurizio and Marco Costanzo) 

14:00-14:15 
Mohammadamin Rezaei Naghadehi, Gioacchino Manfredi, Vito Andrea Racanelli, Luca De 
Cicco and Saverio Mascolo. Decentralized Control of UAV Swarms for Bandwidth-aware Video 
Surveillance using NMPC 

14:15-14:30 
Giovanni Cortigiani, Bernardo Brogi, Alberto Villani, Nicole D'Aurizio, Domenico Prattichizzo 
and Tommaso Lisini. Online Minimization of Robot Obstruction in Eye-to-Hand Camera View 

14:30-14:45 
Marco Costanzo, Giuseppe De Maria and Ciro Natale. Homography-Based Sampled-Data 
Visual Servoing 
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14:45-15:00 
Francesco Crocetti, Marco Legittimo, Giuseeppe Mollica, Mario Luca Fravolini, Gabriele 
Costante and Paolo Valigi. Deep Learning-Based Feature Extraction for Robust Visual SLAM in 
Challenging Indoor Environments 

15:00-15:15 
Ashutosh Arora and Tanvi Saxena. Real-Time Hand Pose Extraction for Human-Computer 
Interaction Using Computer Vision 

14:00-14:45 Session 7C: Education (chairs: Cristiano Maria Verrelli and Laura Screpanti) 

14:00-14:15 
Cristiano Maria Verrelli. Recent Developments in Dynamical-System Analysis (Self-Similarity 
and Time-Harmonic Structures) and Educational Activities (Kids in Control) 

14:15-14:30 
Laura Screpanti, Martina Morano and David Scaradozzi. System identification at university 
with blended learning techniques and advanced assessment strategies 

14:30-14:45 
Laura Screpanti, David Scaradozzi, Damiano Varagnolo and Adriano Fagiolini. Innovative 
Solutions for Collaborative Teaching in Automatic Control: Insights from IFAC TC 9.4 

14:45-15:30 Session 7D: Applications (chairs: Enrico Zero and Camilla Fioravanti) 

14:45-15:00 
Enrico Zero, Alessandro Bozzi, Simone Graffione and Roberto Sacile. EEG Data-Driven Control 
and Risk Prediction in Roundabout Maneuvers 

15:00-15:15 
Camilla Fioravanti, Luca Faramondi, Gabriele Oliva and Roberto Setola. A Lightweight 
Encryption Approach for Data Confidentiality in Critical Infrastructures 

15:15-15:30 
Giordana Bucchioni and Lorenzo Pollini. MUSAPOEM: Multi Satellite Proximity Operations for 
Rendezvous and Docking Missions in Earth and Moon Orbits 

15:30-16:00 Coffee break 

16:00-18:00 

Round table: Facts and myths in machine-learning-based control 
(chairs: Karl Dietrich von Ellenrieder, Angelika Peer) 
 
Participants of round table: 

• Alessandro Chiuso - Università di Padova 
• Simone Formentin - Politecnico di Milano 
• Matteo Saveriano - University of Trento 
• Mario Zanon - IMT School for Advanced Studies Lucca  

20:00-23:00 Social dinner 

 

Friday, September 13th 

09:00-10:00 PhD award session (chairs: Simona Sacone and Alberto Leva) 
10:00-11:00 Assembly SIDRA (chair: Sauro Longhi) 

11:00-11:30 Coffee break 

11:30-13:00 Assembly SIDRA (chair: Sauro Longhi) 

13:00-14:30 Lunch 
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Experimental Investigation of
Multi-Agent Systems with Micro-robots

Dario Calogero Guastella

Dep. of Electrical Electronic and Computer Engineering
University of Catania, 95125, Catania, Italy

Abstract: Many relevant problems in multi-agent systems (MAS) such as formation control
and coordination can be addressed with different solutions, including either centralized or
distributed approaches, protocols based on either absolute or relative information, and many
others. However, most of the related works address these topics only at a theoretical level,
without investigating the practical applicability of the proposed control strategies. The aim
of this paper is to showcase our recent works on the implementation of multi-agent systems
control with an experimental setup based on a set of commercially available micro-robots and a
vision-based position tracking system. With such a setup we were able to test and characterize
face-to-face interaction dynamics and synchronization of moving chaotic oscillators in a real yet
controllable multi-agent robotic implementation.

Keywords: Face-to-face interaction dynamics; Distributed Control; Synchronization; Chaotic
oscillators; Time-varying networks

1. INTRODUCTION

In this paper we present our recent investigations on multi-
agent robotic systems (Tomaselli et al., 2023, 2024) via an
experimental setup that we have realized using a team
of Elisa-3 robots 1 . Elisa-3 robots are small differential-
drive robots, particularly suited for research applications
in the field of cooperative robotics and multi-agent sys-
tems. Our objective is to provide a proof-of-concept illus-
trating the practical utility of theoretical models in a real-
world setting, encompassing factors typically overlooked
in numerical simulations, such as parameter mismatches,
noise, message loss, and deviations from predetermined
movements. Uncertainty in both sensing and actuation
plays a major role when moving from simulated to real-
world implementation, as environment changes (e.g., light-
ing conditions, wheel-floor friction, etc.) or robot changes
(e.g., battery level, wheels alignment, etc.) may affect the
overall system’s behavior. Concerning robot communica-
tion, percentage of lost messages varies from 1% up to
63% when the time interval devoted to message exchange
is 1000 ms and 350 ms.

2. FACE-TO-FACE INTERACTION DYNAMICS

In Tomaselli et al. (2023) we propose a robotic implemen-
tation of the attractiveness-based model for face-to-face
interaction networks introduced in Starnini et al. (2013).
The model is based on simple mechanisms that govern
the interactions among the units and enable the formation
of dynamic groups, as observed in empirical data sets of
human gatherings.

We find that, under a variety of different experimental
conditions, the multi-robot system displays a distribution
of the contact duration and of the time interval between
consecutive contacts similar to the theoretical model. In-
terestingly, the same features in the face-to-face interac-
tions also emerge when the multi-robot team is operated
in challenging conditions. For instance, this is the case
when a very short time is allocated to receive messages
from other robots, causing the loss of many interactions
1 https://www.gctronic.com/doc/index.php/Elisa-3

that still do not hamper the emergence of the face-to-
face dynamics. Altogether these findings demonstrate the
robustness of the attractiveness-based algorithm towards
physical implementations. Fig. 1 includes five snapshots
of an experiment, qualitatively showing the dynamical
evolution of the formation of groups in the system.

3. SYNCHRONIZATION OF MOBILE CHAOTIC
ROBOTS

Synchronization of chaotic oscillators associated to mobile
agents has been investigated in Tomaselli et al. (2024).
In these experiments we use 6 Elisa-3 robots moving in
an arena of size Ly1

× Ly2
as shown in Fig. 2. The

size of the arena is varied in order to change the agent
density ρ = N/(Ly1

Ly2
). An IR and an RGB camera are

positioned above the arena, to capture the whole area
where the robots move. In our model we associate to
each unit i = 1, . . . , N a dynamical state xi(t) ∈ Rn.
The evolution of these variables is governed by a chaotic
dynamics given by the following system of coupled Rössler
oscillators (Rössler, 1976):


ẋi,1 = −xi,2 − xi,3

ẋi,2 = xi,1 + axi,2 + σ

N∑
j=1

Aij(t)(xj,2 − xi,2)

ẋi,3 = b+ xi,3(xi,1 − c)

(1)

with i = 1, . . . , N . The parameters a, b, and c are set to
a = 0.2, b = 0.2, c = 7, such that the uncoupled dynamics
is chaotic. When coupled through a network with static
links, this system has a master stability function of type II,
which means that synchronization may be achieved for any
network with large enough coupling (Huang et al., 2009).
In the considered model, the evolution of the dynamical
variables of the oscillators is influenced by the agent
motion through the matrix A(t).

We exploit the robots’ onboard IR transceivers to enable
local communication among them and realize a fully decen-
tralized and distributed control law for synchronization.
Here, synchronous dynamics emerge under given condi-



(a) (b) (c) (d) (e)

Fig. 1. Dynamical evolution of group formation in an experiment made with 6 Elisa-3 robots. The units lighting up with
red (green) light are interacting (communicating) each other, while no light indicates that the robot is performing a
random walk. (a) The robots form a group of two units that are engaged into a face-to-face interaction. (b) A third
robot is communicating with one of the two units of the group. (c) The group is now formed by three interacting
units. (d) Another robot in the area is communicating with units in the group. (e) The previous group breaks apart
and a new group of two units forms, while the other two robots, belonging to the previous group, move away from
the area of the meeting.

Fig. 2. Experimental setup with 6 Elisa-3 robots in a
80× 60 cm arena.

tions on the characteristic parameters of agent motion,
such as their density and speed, and on the system dy-
namics, such as the coupling gain. The underlying network
of interactions can be characterized in terms of a time-
varying structure where motion inherits the main topolog-
ical features of the graph (Ghosh et al., 2022). We contrast
our results with a theoretical analysis based on the system
master stability function (Frasca et al., 2008) and show
that the mismatches and non-idealities of the system do
not hamper synchronization of all units. In particular, we
find that a regime of robust synchronization emerges also
in the presence of a significant portion of lost messages in
the local communication among robots.

The team of 6 Elisa-3 robots is shown in Fig. 3(a), where
different colors reflect different values of the chaotic state
variable. In Fig. 3(b) the time evolution of the state
variables xi,1(t) is reported. In this case the coupling
strength is fixed to σ = 2. After a transient, the state
variables converge to a common trajectory exhibiting a
small synchronization error.
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A Spatial Sampling Algorithm for Encoding

Geometric Information in Demonstrated Trajectories

Davide Tebaldi, Giovanni Braglia and Luigi Biagiotti

Abstract—This extended abstract addresses the pro-
posal of a new spatial sampling algorithm for encoding
geometric information through arc-length parametriza-
tion in demonstrated trajectories.

I. Introduction

A wide variety of applications utilize Dynamic Move-
ment Primitives (DMP) as a core for a Learning by
Demonstration (LbD) framework to effectively reproduce
the reference trajectories in both space and time [1], [2]:

τ ż(t) = α[β(g − y(t)) − z(t)] + f(s(t)), (1)

τ ẏ(t) = z(t), (2)

τ ṡ(t) = −δs(t), (3)

In particular, one can set the Canonical System (CS)
to ensure that the output of the DMP accurately
reproduces the reference trajectory, including its time
dependency [3]. This means that, if the user stops while
recording the reference trajectory, this information will
also be included in the parameterization of the desired
trajectory. In the classical formulation of DMP, the
duration of this pausing phase can be shortened or
extended by appropriately adjusting a proper parameter
τ . However, it will persist while reproducing the desired
trajectory [4]. This issue becomes especially significant
in applications where recording solely the traveled space
is necessary, i.e., encoding a desired path irrespective of
velocity and acceleration profiles. In [5], the reference
trajectory is recorded in two steps by teaching the path
and the velocity profiles separately. Another example
of an application based on the demonstrated geometric
path can be found in [6]. In this work, the authors
introduce a varying scaling factor of the time in the DMP
formulation, modulated by the tangent component of an
external force. However, when the velocity along the curve
slows down to zero during the demonstration, the tangent
vector to the curve tends to zero as well. In instances
where the velocity during the demonstration is exactly
zero, the tangent direction is undefined, requiring special
treatment in such cases. To fix the above-mentioned
issues, we propose to parameterize the forcing term f⋆(s)
starting from an expression of the learned trajectory,

The authors are with the Department of Engineering "Enzo
Ferrari", University of Modena and Reggio Emilia, Modena, Italy.
davide.tebaldi@unimore.it, giovanni.braglia@unimore.it,

luigi.biagiotti@unimore.it

which is a function of a curvilinear abscissa, i.e., the
length along the curve, rather than time. This can be
achieved by considering a novel sampling algorithm for
the sequence of demonstrated positions, named “spatial
sampling”, that records the points when they are at a
prescribed distance ∆.

II. Spatial Sampling Algorithm

The proposed procedure is based on two steps:

1) Starting from the sequence of samples obtained
by recording the demonstrated trajectory yr(t) =
[yrx

(t), yry
(t), yrz

(t)]T with constant period T ,

yT,k =yr(tk)=yr(kT ) k = 0, . . . , N,

a continuous-time function yL(t) is built by applying
a First-Order Hold (FOH) on it [7]. In this way,
the function yL(t) linearly interpolates the samples
obtained from yr(t), and if the sampling period T is
small enough one can assume that yL(t) ≃ yr(t).

2) In the second step of this procedure, a new sequence
y∆,k is obtained by imposing that y∆,0 = yL(0) and
then, for k > 0, y∆,k = yL(t∆k

), where t∆k
is the

time value that guarantees

‖y∆,k − y∆,k−1‖ = ∆, for k = 1, . . . , M. (4)

The free parameter ∆ defines the geometric distance
between consecutive samples.

Because of the condition (4), the total distance between
the first point y∆,0 and the generic k-th point y∆,k, k > 0,
is simply given by k∆. This distance approximates the
length of the curve yL(t) at the time instant t∆k

, with a
precision that depends on the value of ∆. Therefore, for
∆ small enough, the new sampling mechanism induces a
mapping between the length sk = k∆ and the position
along the approximating linear curve yL, i.e.

y∆,k = yL(t∆k
) with t∆k

= γ−1(sk) (5)

where s = γ(t) is the particular timing law imposed
during the demonstration of the trajectory which describes
how the robot moves along the imposed geometric path,
being variable s the arc-length parameterization of the
curve. In conclusion, given the analytical expression of the
trajectory parameterized with respect to the curvilinear
abscissa ŷr(s) ≈ ŷL(s) = yL(γ−1(s)), the sequence y∆,k
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Figure 1: Sketch displaying the operation of the Spatial Sam-
pling algorithm in a one-dimensional scenario: reference trajec-
tory yL(tT ) sampled with constant period T and interpolating
linear curve yL(t) (a), sequence of spatially sampled points
y

∆,k = yL(t∆k
) with ∆ = ∆̄ (b) and ∆ = ∆̄/2 (c), and samples

of the function sk = γ(t∆k
) for ∆ = ∆̄/2 (d).

can be viewed as the result of a sampling operation with
a constant spatial period ∆. Interestingly,

∥

∥

∥

∥

dŷr(s)

ds

∥

∥

∥

∥

s=sk

≈
‖y∆,k+1 − y∆,k‖

‖sk+1 − sk‖
=

∆

∆
= 1. (6)

Consequently, this derivative will always be different from
zero, and the tangent direction will always be well-defined.
The operation of the algorithm is graphically depicted
in Fig. 1 for a one-dimensional case study. Initially, by
sampling the reference trajectory yL(tT ) at a constant
time interval T , we derive the linear interpolation function
yL(t). The geometric distance ∆k between adjacent points
is obviously varying. Subsequently, in Fig. 1b and Fig. 1c,
the curve yL(t) is re-sampled using two different spatial
intervals ∆. It is evident that smaller values of ∆ result
in a more accurate approximation of the original curve. In
Fig. 1d, the samples of the timing-law s = γ(t) imposed
during the demonstration of the trajectory and obtained
with the same spatial period ∆ of case (c) are also pre-
sented. These illustrate how the length along the geometric
path changes with time throughout the demonstration.

Remark 1: The computation of the parametric func-
tion y⋆(s) based on the pair (sk, y∆,k), k = 0, . . . , M

defines the concept of Geometric DMP (GDMP) [8]. This
type of DMP solely derives from the geometric path of the
demonstrated trajectory and can be linked to any phase
variable s(t).

III. Conclusions

In this extended abstract, a new spatial sampling algo-
rithm for encoding geometric information in demonstrated
trajectories is presented. This algorithm decouples the
demonstrated curve from its timing law thus allowing
to generate an arc-length parameterized geometric path,
and enables the concept of geometric dynamic movement
primitives which is described in [8].
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Soft Robotic Hands:
Embracing the Interaction with the Surrounding Environment

Maria Pozzi1,2, Valerio Bo1,2, Enrico Turco1,2, Leonardo Franco1,
Gionata Salvietti1, Monica Malvezzi1 and Domenico Prattichizzo1,2

Abstract— The advent of soft robotics has greatly changed
researchers’ perspectives on robotic manipulation. The philos-
ophy of embedding the robot intelligence at the design level has
led to new prototypes of robotic hands that show capabilities
inconceivable with their rigid counterparts. This contribution
outlines on-going research efforts on how to unlock new
grasping skills in soft-rigid grippers exploiting the interaction
with the environment.

I. INTRODUCTION

Endowing robots with manipulation skills requires control-
ling the motion and forces transmitted at the contact points
between the robotic gripper and the grasped object. While
rigid robotic grippers are typically controlled to avoid the
interaction with the environment over which the target ob-
jects are lying, soft hands can safely and deliberately enter in
contact with the surrounding environment. It has been shown
that the purposeful exploitation of environmental constraints
generates robust grasps, even in the presence of perception
uncertainties [1]–[3]. This abstract presents three different
approaches to the exploitation of environmental constraints.
The first focuses on the direct exploitation of rigid constraints
present in the environment (e.g., tables, walls) using state-
of-the-art soft anthropomorphic hands (Fig. 1a). The second
explores the possibility of embedding softness directly in the
environment to allow even rigid grippers to safely interact
with it (Fig. 1b). The third proposes adding rigid “embedded
constraints” directly in the hand structure, to facilitate the
exploitation of environmental constraints (Fig. 1c).

II. EXPLOITING ENVIRONMENTAL CONSTRAINTS WITH
STATE-OF-THE-ART SOFT ROBOTIC HANDS

In [2], [3], methods to execute grasping strategies that
exploit environmental constraints with state-of-the-art robotic
hands have been proposed. The main idea is to first align
the hand over the object using a model-based approach, and
then exploit the surface over which the object is lying either
by dragging the object over it (Slide-to-edge grasp), or by
caging the object (Surface-constrained grasp, Fig. 1a). In
[2], we proposed to exploit the compliance of soft hands
to establish large contact areas with the objects and generate
enough friction forces to slide the object to the edge of a

1Dept. of Information Engineering and Mathematics, University of Siena,
Italy ({name.surname}@unisi.it).

2Humanoids & Human Centered Mechatronics Research Line, Istituto
Italiano di Tecnologia, Genoa, Italy

*We acknowledge the support of the European Union by the Next Gen-
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(a) (b) (c)

Fig. 1: (a) Soft hand over a rigid environment [3], (b) rigid
gripper over a soft environment [4], and (c) soft-rigid gripper
over a rigid environment [5].

table. Two different strategies were developed and tested. The
first performed a single motion to drag the object towards
the edge of the table and grasp it. The second included
two subsequent motions: dragging and then grasping from
the edge. Both strategies relied on visual and force sensing
data. Results suggested that the two strategies can be seen
as complementary, where one fails the other one succeeds
and vice-versa. In [3], a model-based approach to plan top-
grasps with soft hands was proposed. The so-called “closure
signature” was used to model closure motions of soft hands
by associating to them a preferred grasping direction. This
direction can be aligned to a suitable direction over the object
to achieve successful surface-constrained grasps. The result-
ing grasp planner was tested with multiple experimental trials
with two different robotic hands and achieved a remarkable
grasp success rate with a variety of objects.

III. EMBEDDING SOFTNESS IN THE ENVIRONMENT FOR
SAFE INTERACTION WITH RIGID GRIPPERS

In [4], [6], we proposed to exploit soft inclusions in the
environment to perform robust grasps with rigid grippers
(Fig. 1b). This was achieved by introducing a grasping
strategy that exploited the SoftPad, a matrix of silicone
pneumatic modules connected to pressure sensors that, when
placed beneath an object, can be used to estimate object pose,
shape, and center of mass based on pressure variations. Given
the estimated center of mass, a planner computes the center
and the direction of grasp that can be used by a robotic
gripper to pick the object up. Thanks to the SoftPad, grasps
can be performed without the need of a camera to locate the
object and without prior knowledge of its mass distribution
or its shape. Additionally, the gripper can safely interact with
the soft surface, coping with uncertainties on the object pose
and achieving more robust grasps thanks to environmental



(a) (b) (c) (d)

Fig. 2: Promising features of scoop-shaped embedded constraints: (a, b) applicability to commercial hands to perform new
grasping strategies; (c, d) versatility for unstructured environments: (c) pick and (d) place of food items in narrow containers.

constraints exploitation strategies. Our approach went be-
yond classical vision-based object detection strategies, as it
allows to estimate not only the pose and shape of the object
but also its center of mass. In addition, there is no need to
add force sensors to the robot, as the sensorized modules can
detect the contact between the gripper and the SoftPad. To
test the proposed grasping strategy we chose different objects
to show the potentialities of the grasp planning algorithm
based on the SoftPad pressure readings.

IV. SOFT-RIGID GRIPPER WITH EMBEDDED
CONSTRAINTS

Salvietti et al. [7], proposed the idea of embedding rigid
constraints in the hand structure and developed the Soft
ScoopGripper (Fig. 1c), a non-anthropomorphic gripper fea-
turing two soft fingers and a scoop-shaped structure attached
to the palm through a flexible hinge. Then, we started
investigating grasp planning strategies to exploit embedded
constraints [5], [8], as well as methods to automatically
design them [9], [10].

From the planning point of view, we developed model-
based and data-driven techniques for implementing the scoop
grasp, in which the scoop is used to separate the target object
from the contacting surfaces (e.g., table, wall) so that it can
be enveloped with the soft fingers. First, we proposed to com-
pute pre-grasp poses for the Soft ScoopGripper solving an
optimization problem aimed at maximizing the grasp quality
and the contact area between the scoop and the object [5].
Then, we developed a fast and data-efficient Learning from
Demonstrations (LfD) method to learn grasping strategies
from human demonstrations [8].

Regarding the design of embedded constraints, we intro-
duced data-driven approaches for the automated design of
scoop-shaped structures, including methods to find optimal
size and placement of the add-ons to implement novel grasp-
ing strategies with commercial robotic hands [9] (Fig. 2a,
2b), and to optimize the material distribution [10].

Recently, also motivated by 2023 IEEE Robosoft Compe-
tition (“food handling for trays preparation”), we developed
a novel gripper, the Double-Scoop Gripper, specifically de-
signed for food handling. Thanks to the presence of two
scoop-shaped structures, the new gripper can effectively
exploit the edges of narrow containers to pick and place food
items (Fig. 2c, 2d) [11].

V. CONCLUSIONS AND FUTURE WORK

This abstract summarizes recent research efforts towards
the exploitation of environmental constraints with soft, rigid,
and soft-rigid grippers. Indeed, the use of embedded soft-
rigid constraints opened up several possibilities from the
design and grasp planning points of view, unlocking new
capabilities both in off-the-shelf general-purpose devices and
in specialized grippers (Fig. 2). Future work will focus on
applications in cluttered environments.
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Visual Action Planning with Multiple Heterogeneous Agents

Martina Lippi*1, Michael C. Welle*2, Alessandro Marino3, Andrea Gasparri1, Danica Kragic2

Abstract— Visual planning methods are promising to handle
complex settings where extracting the system state is challeng-
ing. None of the existing works tackles the case of multiple
heterogeneous agents, characterized by different capabilities
and/or embodiment. We propose a centralized method to
realize visual action planning in multi-agent systems (MASs)
by exploiting a roadmap built in a low-dimensional latent space
and used for planning. To enable MASs, we infer possible
parallel actions from a dataset composed of tuples associated
with individual actions. Next, we evaluate the feasibility and
cost of them based on the capabilities of the MAS and endow
the roadmap with this information. The approach is validated in
a simulated burger cooking task and a real-world box packing
task.

I. INTRODUCTION

Planning from raw observation [1], like images, has proven
very relevant in complex scenarios, such as when the scenes
are highly dynamic and unstructured, as it eliminates the
necessity to explicitly identify the system state. Moreover,
the use of raw observations paves the way for realizing visual
action planning, i.e., for generating visual plans, along with
action plans, which allow to reach desired observations given
start ones. The availability of visual plans also enhances
the comprehension of the robot’s plan by humans. Several
prior works in the literature have investigated visual action
planning methods, e.g. [2], [3]. However, all the above
methods only consider a single agent. In many scenarios,
the availability of multiple heterogeneous agents - meaning
agents that have different capabilities and/or embodiment - is
beneficial, if not essential, to successfully accomplish a given
task. Although many works exist on multi-agent planning
and allocation problems [4], these i) do not provide visual
information and ii) often require extensive data regarding the
actions to execute, which might not be easily retrieved.

Contribution: Differently from the literature, we propose
a method to realize visual action planning with multiple
heterogeneous agents by relying on partial data only. By
building on our Latent Space Roadmap (LSR) framework [5]
for single agents, the proposed method is able to identify
visual and action plans, with possibly parallel actions, given
start and goal observations, and determine the optimal assign-
ment of actions to the available agents, taking into account
their capabilities. Details on the method can be found in [6].

II. PRELIMINARIES

Dataset: Let O and U be the spaces of all possible system
observations and actions, respectively. Similar to [5], we
assume the availability of a dataset To composed of tuples

*These authors contributed equally (in alphabetical order).
1Roma Tre University, Italy, 2KTH Royal Institute of Technology,

Sweden, 3University of Cassino and Southern Lazio, Italy

Fig. 1: Example of VAPs obtained with an LSR (left) with one
agent, and with a C-LSR (right) with a MAS.
(Oi, Oj , ρ), where Oi, Oj ∈ O are two observations, and
ρ = (b, u) represents the action information between them.
Specifically, b ∈ {0, 1} is a binary variable denoting whether
an action occurred (b = 1) or not (b = 0) between Oi and Oj ,
and u ∈ U , represents the respective action when b = 1, i.e.,
it is an atomic operation executed by one agent. No-action
tuples (with b = 0) capture possible task-irrelevant factors of
variation in the observations, e.g., varying light conditions.

LSR framework: Given start Os and goal Og observa-
tions, the objective of visual action planning is to define
the sequences of actions to reach the goal and of respective
observations. In a single-agent scenario, a sequential Visual
Action Plan (VAP) is defined as P seq = (P seq

o , P seq
u ), where

the visual plan P seq
o = (Os = O1, · · · , ON = Og) contains

observations of the intermediate states from start to goal, and
the sequential action plan P seq

u = (u1, ..., uN−1) provides
the respective actions ui to transition from Oi to Oi+1, ∀i.
The LSR framework [5] allows to realize sequential visual
action planning in single agent scenarios. Briefly, this is
based on mapping the high dimensional observations in a
lower dimensional structured latent space Z and then build
a roadmap in this space to perform planning. Based on
the dataset To, the latent space Z is obtained by resorting
to an encoder-decoder architecture with a contrastive loss:
observations of no-action tuples (with b = 0) are attracted,
and observations of action tuples (with b = 1) are repelled,
thus clustering together the same underlying states in Z .
Next, a directed graph G = {V, E}, called LSR, is built in
Z where each node in V is associated with a cluster of
latent states, and each edge e = (i, j) in E is associated
with a possible action ue to transition from node i to node
j (inferred from To). Given the latent encodings of Os and
Og , the LSR is used to find plans in the latent space, which
are then used to generate the VAP P seq .



III. PROBLEM SETTING AND SOLUTION OVERVIEW

Setting: Let A = {a1, ..., ana
} be the set of na available

agents. For each agent ai, we define i) the set Sa
i of available

skills, e.g., tools or sensors, ii) the average normalized
workload wi,j ∈ [0, 1] for performing the action uj , ∀uj ∈
U , which can depend on physical or cognitive properties, and
iii) a reachability function ri(x) ∈ [0, 1], assessing the ease
of reaching (and operating in) a specific pose x. For each
action uj ∈ U , we identify i) the set Su

j of skills, e.g., tools
or sensors, required to perform the action, and ii) the set Pj

of relevant poses for the action which must be traversed to
execute it. We define that an agent ai possesses the capability
to carry out an action uj if it/they has/have all the necessary
skills for executing the action, i.e., Su

j ⊆ Sa
i , and can reach

all the respective relevant poses, i.e., ri(xj) > 0, ∀xj ∈ Pj .
In general, there exist actions that can be potentially executed
concurrently (if the MAS has the needed capabilities). To
identify them, we introduce the following condition.

Condition 1: Multiple actions {u1, ..., up} can be exe-
cuted in parallel if executing them in arbitrary order from
a certain state results in the same final state.
The rationale behind Condition 1 is that, if the execution
order does not matter, then, no precedence constraints (i.e.,
expressing actions that must be executed before/after others)
between the actions exist and these can be carried out concur-
rently. Let Uk represent a collection of assignment couples
(ai, uj), denoting that the agent ai has to execute action
uj . We can define a parallel VAP as P par = (P par

o , P par
u )

where the action plan is P par
u = (U1, ...,UN−1), while the

visual plan P par
o = (Os = O1, · · · , ON = Og) collects the

observations obtained by applying all the actions in U i.
Objective: We aim to generate parallel VAPs such that i)

they provide visual and action plans to reach the goal state,
ii) the assignment couples are valid, i.e., the assigned actions
align with the capabilities of the respective agents, and iii)
the overall workload and reachability indices are optimized.

Overview: To achieve this, our core idea is to infer all
the possible actions that can be executed in parallel by
exploiting the dataset To and the respective LSR framework,
and subsequently build a new roadmap in the latent space that
incorporates these actions by considering agent capabilities
and action requirements. We resort to Condition 1 to identify
potential parallel actions and define a Parallel LSR (P-LSR).
This represents a directed graph Gpar = (V, Epar) where
the set of edges encodes potentially parallel actions that are
executable by a multi-agent system, regardless of the number
of agents and their individual capabilities. Hence, each edge
e = (i, j) in the set Epar is associated with a set of actions
Ue, all of which must be executed to transition from node i
to node j. The set of nodes coincides with the LSR one.

Next, we build a capability LSR, denoted as C-LSR, that
takes into account the agents capabilities and the actions re-
quirements. This is defined as a directed graph Gc = (V, Ec)
where the set of edges encodes possible assignment couples
by considering the agents at hand. Specifically, each edge
e = (i, j) in the set Ec is associated with a set Ue of
valid assignment couples and with a cost ce, quantifying the

Fig. 2: Histograms of the path lengths N with different agents.
effectiveness of the multi-agent system to perform the actions
in Ue. The set of nodes remains unchanged with respect to
the LSR. This graph is used online to generate parallel VAPs
given start and goal observations. Fig. 1 depicts an example
of plans obtained using the LSR (left) and the C-LSR (right)
in a burger cooking task, showing how the parallelism of
multiple agents is exploited in the C-LSR.

IV. VALIDATION RESULTS

We validate the framework on a simulated burger cooking
task involving different objects, i.e., meat patty, cheese,
lettuce, and the top and bottom parts of the bun, requiring dif-
ferent manipulation skills, i.e., gripping, cutting, and grilling
skills. A team composed of maximum two robots r1 and
r2, and two humans h1 and h2 is considered. Robots only
have gripping and cutting skills, while humans possess all
skills but require higher workload compared to the robots.
We select 1000 different start and goal observations from a
novel dataset and evaluate the respective parallel VAPs. The
following sets of agents are analyzed: {r1}, {h1}, {r1, h1},
{r1, r2, h1}, and {r1, r2, h1, h2}. In all cases, all actions
selected as potential parallel actions are correctly combined
and we obtain a percentage of correct individual transitions
in the paths equal to ≈ 97%, and, except for A = {r1}, a
percentage of full correct paths of ≈ 82%. Figure 2 reports
the histograms of the path lengths N with the different
agents. When only r1 is included (in blue), no paths are
found 597/1000 times since the robot does not possess the
grilling skill. In contrast, when only h1 is included (in green),
a path is obtained in the majority of cases, with average and
maximum path lengths equal to ≈ 6.3 and 12, respectively.
When adding a robot (in red), the path lengths significantly
reduce achieving average equal to ≈ 4.8 and maximum equal
to 10. Additional improvements are observed when expand-
ing the set of agents further. Experimental results on a real-
world box packing task are shown in the video at the link:
https://newline.dia.uniroma3.it/videos/multi-LSR.mp4.
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I. INTRODUCTION

This work proposes a distributed estimation-control scheme for
the control of two robots. As shown in Fig. 1, a steering car, defined
as the leader, has to follow a desired trajectory while maintaining a
safety distance from some static obstacles. From above, a quadcopter
must follow the ground vehicle to maintain the formation. This topic
is of interest because it is a common problem when dealing with
multi-robot systems, which are used nowadays in different fields [1].
In addition, hybrid systems such as air-ground cooperation can tackle
complex tasks by overcoming the limitations of homogeneous teams
through the use of different capabilities.

Fig. 1. In this paper, the problem of formation and trajctory-tracking of air-
ground unmanned vehicles is addressed.

To solve this problem, a Nonlinear Model Predictive Controller
(NMPC) and a Nonlinear Moving Horizon Estimator (NMHE) have
been combined. To the authors’ knowledge, while various works have
demonstrated the robustness and accuracy of this type of scheme in
different applications [2], none has used NMPC-NMHE for this type
of heterogeneous system. Unlike classical control techniques, the pre-
sented scheme can handle noisy, partial, and missing measurements
of the agents’ state.

II. METHODS

A. Two Agents’ Models

In order to describe the Unmanned Ground Vehicle (UGV) and the
Unmanned Aerial Vehicle (UAV), the Ackermann model [3]

ẋ(t) = v(t) cos(ψ(t))

ẏ(t) = v(t) sin(ψ(t))

ψ̇(t) = (v(t)/L) tan(w1(t))

v̇(t) = w2(t)

(1)

and the dynamic model obtained by the Euler-Lagrange approach in
[4] 

ẍ(t) = −(u1(t)/M) sin(θ(t))

ÿ(t) = (u1(t)/M) cos(θ(t)) sin(ϕ(t))

z̈(t) = (u1(t)/M) cos(θ(t)) cos(ϕ(t))− g

θ̈(t) = u2(t)

ϕ̈(t) = u3(t)

ψ̈(t) = u4(t)

(2)

are used. Both models are in continuous time, but discrete time
models can be obtained using either the trapezoidal rule (as done
for the drone) or the 4th order Runge-Kutta method (used here for
the UGV).

B. NMHEs

The NMPC assumes that the entire state of the system is measur-
able, which is not always the case in practice. Therefore, a separate
NMHE has been defined for both unmanned vehicles (UVs). The
formulation is the same for both agents and is as follows

min

He∑
i=1

∥y(k − i)− h(x̂(k − i),u(k − i))∥2V (3a)

s.t. x̂(k − i+ 1) = f(x̂(k − i),u(k − i)) (3b)

xmin
UV ≤ x̂(k − i) ≤ xMAX

UV (3c)

In short, y and u are the past noisy measurements and control inputs
in the last He time instants (the “prediction horizon”). In a multiple
shot fashion, the decision variables of the minimisation problem are
the estimated states x̂ over the prediction horizon. The functions f
and h are the nonlinear discrete time evolution and measurement
models. The problem is therefore to minimise the deviations from
the predicted past measurements and the collected values, subject
to evolution constraints and state bounds. A classical choice for the
deviation weights, when the measurement noise is zero mean and
Gaussian, is

ν(t) ∼ N (0ny×1,Σν) Σν = diag(σ2
1 · · · σ2

ny ) (4a)

V =
(√

Σν

)−1

= diag(1/σ1 · · · 1/σny ) (4b)

C. NMPCs

Once the current state of both the UGV x̂UGV (k) and the UAV
x̂UAV (k) are estimated, the control action can be computed in a
distributed manner. The formulations of the two NMPCs are slightly
different. Focus first on the leader. In absence of obstacles, the
steering car’s NMPC is defined as follows

min

Hp∑
i=1

∥xUGV (k + i|k)− rUGV (k + i)∥2QUGV

+

Hu−1∑
i=0

∥uUGV (k + i|k)∥2R+

+

Hu−1∑
i=0

∥∆uUGV (k + i|k)∥2R∆

(5a)

s.t. xUGV (k|k) = x̂UGV (k) (5b)

xUGV (k + i+ 1|k) =
fUGV (xUGV (k + i|k),uUGV (k + i|k))

(5c)

0 ≤ exy(k +Hp|k)Texy(k +Hp|k) ≤ (dSafe + ε)2 (5d)



xmin
UGV ≤ xUGV (k + i|k) ≤ xMAX

UGV (5e)

umin
UGV ≤ uUGV (k + i|k) ≤ uMAX

UGV (5f)

Again, the decision variables are both the state and the control
trajectories over the prediction horizon Hp. The objective function
simultaneously penalises the tracking errors, the control input and its
variations. While the other constraints are trivial, (5d) are terminal-
region constraints to force the vehicle to be sufficiently close to the
reference signal at the end of the prediction horizon. If an obstacle
is detected (assuming a sensor such as LIDAR is on board), the
following inequality constraints are added to (5) in a switching control
fashion.

dObs(k + i|k)T dObs(k + i|k) ≥ (dSafe + ε)2 (6)

One of the main advantages of the MPC is that it can generate
trajectories that can be transmitted to other followers. Following this
insight and assuming that the ground robot is moving slowly, this
last communicates its one-step state prediction to the drone. This last
information is used in the aerial vehicle controller formulation

min

Hp∑
i=1

∥xUAV (k + i|k)− rUAV (k)∥2QUAV
(7a)

s.t. xUAV (k|k) = x̂UAV (k) (7b)

xUAV (k + i+ 1|k) =
fUAV (xUAV (k + i|k),uUAV (k + i|k))

(7c)

xmin
UAV ≤ xUAV (k + i|k) ≤ xMAX

UAV (7d)

as a constant reference over the prediction horizon

rUAV (k) =
[
x(k + 1|k) 0 y(k + 1|k) 0

zRef (k) 0 0 0

0 0 ψ(k + 1|k) 0
]T (8)

III. RESULTS

To validate the proposed solution, some simulations were car-
ried out in MATLAB/Simulink. To efficiently solve the nonlinear
optimisation problems, the internal point optimiser provided by the
CasADi [5] framework is used. The parameters of the agents were
chosen from the datasheets of two commercially available robots,
the JetRacer racing car and the Parrot Bebop 2.0 drone. On the
other hand, the measurement noise has been modelled according to
the specifications of the Optitrack motion capture system. Different
reference trajectories, numbers of obstacles and positions of obstacles
were tested: Fig. 2 and 3 are two scenarios taken by sample. Thanks to
the reliable estimates from NMHE and the accurate predictions from
NMPC, the ground car can avoid detected obstacles while keeping
the tracking errors of both robots within a few centimeters.

IV. CONCLUSION

The strengths of the presented distributed NMPC-NMHE compared
to classical control techniques are obvious. The results obtained in
simulation are promising and encourage to continue in this direction.
The main idea is to implement the whole architecture and embed
it in real robots. In addition to the classic problems associated
with distributed control algorithms, such as communication between
agents, the major difficulty is the computational load required to solve
non-linear optimisation problems in real time.

Fig. 2. A case study with a circular reference and an increasing desired height
with one obstacle on the UGV way.

Fig. 3. Another case study with a eight-shaped reference and a decreasing
desired height, with two obstacles this time.
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Artificial fear for the control of autonomous robots
Andrea Usai and Alessandro Rizzo

Abstract—We present a neuro-inspired control framework for
autonomous robots that integrates an artificial emotion of fear,
drawing inspiration from LeDoux’s dual-pathway hypothesis.
To replicate the ”Low Road” pathway, our system comprises
proxies for the thalamus, implemented as a nonlinear filter; the
amygdala, modeled as a Soft Actor-Critic (SAC) reinforcement
learning agent; the brainstem, orchestrated through a Nonlinear
Model Predictive Controller (NMPC). The NMPC’s parameters
are adjusted by the amygdala, enabling it to generate control
inputs to actuate the robot. Our preliminary results demonstrate
that the robot exhibits a better adaptive behavior than a standard
NMPC in both static and dynamic environments with obstacles
characterized by different hazard levels.

I. INTRODUCTION AND METHODOLOGY

Survival and self-preservation are crucial for developing
intelligent robots that can adapt to dynamic and unknown
environments [1]. Implementing artificial emotions, among
which fear has been mostly pursued, can help robots to better
evaluate and respond to unexpected and potentially dangerous
situations [2]. While most approaches incorporate emotions
as adaptive mechanisms to enhance human-robot interaction
in social contexts [3], few efforts use artificial emotions for
autonomous robot control. Here, we take inspiration from neu-
roscientific evidence to propose a novel implementation of an
artificial fear mechanism in robotics, to enhance robot’s self-
preservation. The Dual-pathway hypothesis is a neuroscientific
model developed by Joseph LeDoux [4], which describes
how the brain interprets the fear of external stimuli and
how this influences the resulting behaviour. LeDoux suggests
the presence of two afferent neural pathways involving the
amygdala, which work together to mediate the conditioned fear
response: the Low Road and the High Road. The Low Road
enacts instinctive and fast reactions to stimuli, whereas the
High Road mediates these stimuli with contextual information,
past experience and reasoning ability. Based on this model,
we present a new fear-based control architecture to enhance
robot’s self-preservation. At present, the model only repro-
duces the Low Road, comprising the amygdala, the thalamus
and the brainstem-musculoskeletal system connection (see
Fig. 1(a)). Each component is modeled based on its primary
functions within the pathway. A brief explanation of each
component is provided below:

The authors are with the Department of Electronics and Telecommu-
nications, Politecnico di Torino, Torino, Italy. Email: {andrea.usai,
alessandro.rizzo}@polito.it. This study was carried out within the
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European Union Next- GenerationEU (PIANO NAZIONALE DI RIPRESA E
RESILIENZA (PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO
1.3 – D.D. 1555 11/10/2022, PE00000013). This manuscript reflects only the
authors’ views and opinions, neither the European Union nor the European
Commission can be considered responsible for them.

1) Thalamus: It collects, selects, and fuses different types
of environmental stimuli and transmits them as raw infor-
mation to the amygdala. We model it as a filtering function
Φ(xk,x

env
k ), which takes in input the robot state vector xk

and the available environment information xenv
k at the discrete

time k to create an observation vector sk = Φ(xk,x
env
k ) =

[φ
(1)
k , φ

(2)
k , . . . , φ

(p)
k ]T composed of the p ∈ N main features

φ
(p)
k that can help the amygdala to assess the situation the

robot is facing (e.g. obstacles distances and velocities, etc).

2) Amygdala: It evaluates the raw signals coming from the
thalamus to identify potential threats by associating them to a
negative or positive consequence. This association is achieved
by a punishment/reward mechanism that serves to determine
the emotional valence of the stimulus [5]. Therefore, we design
an artificial fear emotion Fk whose discrete time behaviour
is described by Fk = σ(wT sk) where sk is the observation
state extracted by the thalamus, wT is a vector of manually
tuned weights and σ(·) is a sigmoid function. The amygdala
augments the observation vector of the thalamus with the
current fear value Fk. At each time k, such an augmented
observation vector s̃k = [φ

(1)
k , φ

(2)
k , . . . , φ

(p)
k ,Fk]

T is used by
the amygdala to derive a vector of optimal parameter matrices
a∗
k =

[
Qk, Rk, αk, βk

]∗
for the NMPC. The latter, which

emulates the brainstem, exploits such parameter matrices to
actuate the robot motion (i.e., the muscoloskeletal system).
Such vector is selected over a continuous action space through
a reinforcement learning approach based on a Soft Actor-
Critic agent. The action selection is guided by a reward
function defined as R(̃sk, ak) = RF + RI + RG where RF

promotes actions that reduce fear, RI penalizes actions leading
to infeasible states for the NMPC and RG promotes actions
guiding the robot to its goal in the shortest possible time.

3) NMPC: As stated above, it receives its parameters from
the amygdala, which accounts for the level of fear and other
exogenous information. Here, we consider a mobile robot
model as a unicycle (Fig. 1(b)), with discrete-time kinematics

xk+1

yk+1

θk+1

 =

xk

yk
θk

+ Ts

cos θk 0
sin θk 0
0 1

[
vk
ωk

]
= fd(xk,uk) (1)

where xk =
[
xk yk θk

]T
and uk =

[
vk ωk

]T
are

the state vector and the control input vector at discrete time
instant k, respectively. At each time step k, the amygdala
provides parameter matrices Qk, Rk, αk and βk to the NMPC,
which computes the optimal control input sequence u∗(·|k)
over the prediction horizon N ∈ N by solving the following
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Fig. 1: a) Fear-based control architecture based on the Low Road - b) Coordinate systems of the mobile robot: [xk, yk] and θk are the
position and the orientation of the robot in the inertial frame {O, X, Y}, vk and ωk are the linear and angular velocity of the robot in
the body frame {OB ,XB ,YB}, respectively - c) Comparison of RL-NMPC with a base NMPC in a static environment- d) Comparison of
RL-NMPC with a base NMPC in a dynamic environment.

optimization problem:

min
u(·|k)

N−1∑
i=0

ℓ(xk+i|k,uk+i|k, Qk, Rk) +B(xk+i|k, αk, βk)

s.t. xk|k = xk,

xk+i+1|k = fd(xk+i|k,uk+i|k), ∀i = 0, . . . , N − 1,

uk+i|k ∈ U, xk+i+1|k ∈ X, ∀i = 0, . . . , N − 1,
(2)

where U is the set of feasible control inputs and X is the set
of feasible states. The stage cost ℓ(xk+i|k,uk+i|k, Qk, Rk) =∥∥xr − Cxk+i|k

∥∥2
Qk

+
∥∥uk+i|k

∥∥2
Rk

is intended to guide the
robot toward the goal xr while the term B(xk+i|k, αkj , βkj ) =∑nobs

j=1 −αkj log(βkj

∥∥Cxk+i|k − xobsj

∥∥2) is a logarithmic
penalty function designed to move the robot away from the
j-th harmful environmental obstacle in position xobsj . Indeed,
to ensure a better adaptive behaviour, the amygdala is able
to estimate different logarithmic penalty function parameters
αkj and βkj according the dangerousness of the j-th obstacles.
Finally, the term C = diag([1, 1, 0]) is a matrix that extracts
the robot’s position from the state vector xk+i|k,

II. RESULTS AND DISCUSSION

Our approach has been validated through MATLAB sim-
ulations (see Fig. 1(c) and Fig. 1(d)). Preliminary results
indicate that the robot’s behavioral response can be modulated
according to the fear level, producing better adaptive behav-
ioral response with respect a standard NMPC, in both static
and dynamic environments with different type of hazardous

obstacles. Furthermore, our proposed approach provides two
key advantages compared to a conventional NMPC implemen-
tation. Firstly, it guarantees an automatic parameter tuning
mechanism, which is particularly beneficial in scenarios where
manual parameter tuning could be challenging due to the
complexity of the environment the robot operates in. Secondly,
as the robot learns how to reach the goal, our approach
eliminates the need for terminal cost, terminal constraint and
a long prediction horizon to ensure successful navigation
leading to a significant reduction in NMPC execution time.
Nevertheless, the reactive response of the Low Road must be
complemented by the mediated response of the High Road,
to be suitably implemented with slower but more articulated
decision-making processes. To this aim, we are exploring large
language models to interpret the robot operational scenario and
provide contextual information to attain a trade-off between
reactive responses and long-term strategic planning.
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A Nonlinear MPC-based Adaptive Cruise Control for Electric
Automotive Vehicles

Michele Pagone, Stefano Favelli, Raffaele Manca, Gabriel Jenner de Faria Orsi, Angelo Bonfitto,
Carlo Novara, Andrea Tonoli

I. INTRODUCTION

Electric Vehicles (EVs) are emerging as a promising,
cleaner and more sustainable solution future for transporta-
tion, aiming to combat climate change and reduce our
dependence on fossil fuels. EVs powertrain plays the main
role in determining the overall performance and efficiency
of an electric vehicle. An EV powertrain is composed of
several interconnected subsystems, including the electric
motor, power electronics (usually a DC/AC converter), and
the energy storage system (usually lithium-ion batteries)
[1], [2]. Efficiently managing and optimizing these sub-
systems is vital to achieve superior vehicle performance,
extended driving range, and enhanced energy efficiency. In
recent years, substantial advancements have been made in
powertrain control strategies and optimization techniques,
owing to breakthroughs in technology, computing power,
and an increasing understanding of EV dynamics. The im-
plementation of sophisticated control algorithms, intelligent
energy management systems, and real-time optimization has
revolutionized the way electric vehicles perform on the road.
In this work, the purpose is to leverage the nonlinear Model
Predictive Control (MPC) framework in order to design an
efficient Adaptive Cruise Control (ACC) which accounts
for the EV powertrain dynamics, in order to optimally
managing the energy consumption of the battery to increase
its range, and, thus, the energetic efficiency of the powertrain
as a whole. A classic car following scenarios is studied,
simulating a realistic ACC case, with the ego vehicle being
controlled by the MPC, and the reference being generated
using a Constant Time Gap (CTG) policy. Finally, the MPC
is used to generate the required torque for a complete high-
fidelity model of the case study vehicle, a Fiat 500e.

II. ELECTRIC VEHICLE DYNAMICS

The vehicle dynamics accounts for both the longitudinal
chassis dynamics and the internal dynamics of the powertrain
battery. In the following, we present a simplified vehicle
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nonlinear dynamics to be accounted as the MPC prediction
model, whereas, as plant, an high-fidelity Fiat 500e model is
employed. The longitudinal dynamics can be described as the
sum the inertial force and the resistance forces: i) forces due
to road inclination Fslope, ii) aerodynamics drag Faero(vvh),
and iii) rolling resistance Froll(vvh), such that

v̇vh =
1

Mvh

(
Twh

rwh
−Fslope−Faero(vvh)−Froll(vvh)

)
(1)

where Mvh is vehicle mass, Twh is the equivalent wheel
torque and rwh is the wheel radius. Note that, Froll(v) and
Faero(v) are linear and quadratic function of the vehicle
velocity, respectively. Concerning the battery model, the
dynamics is written is terms of the battery state of charge
(SOC) time evolution, i.e. the variation of the ration between
the current battery charge and the nominal battery capacity
(see, e.g., [3]). The torque at wheels can be related to the
torque delivered by the powertrain as

TEM = Twh/η
sign(Twh)τgb
tr (2)

where τgb and ηtr are the gearbox ratio and efficiency,
respectively. Since the power of the electric motor is PEM =
TEMωEM – where ωEM is the electric motor angular rate
– the power of the battery can be directly related to PEM ,
given the electric motor efficiency map, as

Pb = PEM/η
sign(PEM )
EM . (3)

Hence, the EM dynamics is given by

˙SOC = − Ib

Qnomη
sign(Ib)
b

(4)

where Qnom is the nominal battery capacity, ηb is the
Columbic efficiency,

Ib = (Voc −
√
V 2
oc − 4RoPb)/2Ro (5)

is the battery current, Pb is the power delivered by the
battery, Voc is the battery open-circuit voltage, and Ro is
the output resistance. Note that Voc and Ro depend on the
SOC itself and their value as been obtained by piece-wise
polynomial fitting. In the end, for control purposes, the state
isx = [xvh, vvh, SOC]⊤ – being xvh the vehicle position –

and the input u = avh
.
=

Twh

Mvhrwh
.



III. PROPOSED MPC FORMULATION

The vehicle longitudinal and battery dynamics can be
viewed as an affine-in-the-input nonlinear system

ẋ(t) = f(x(t)) + u(t) (6)

where x(t) ∈ X ⊆ Rnx is the state vector at time t ∈
R, u(t) ∈ U ⊆ Rnu is the input vector (where U ∋ 0 is
a convex, closed, and compact set). The measurements of
the state vector are sampled with period TS > 0. At each
sampling time t = tk, a prediction of the system state x̂(t)
over the time interval [tk, tk+Tp] is performed, where Tp ≥
TS is the prediction horizon.

The nonlinear MPC optimal control problem is formulated
as follows.

u∗ = argmin
u

J
(
x(t), u(t)

)
subject to:
˙̂x(τ) = f(x̂(τ)) + û(τ), x̂(tk) = x(tk),

x̂(τ) ∈ X ⊂ Rnx , û(τ) ∈ U ⊂ Rnu , ∀τ ∈ [tk, tk + Tp].
(7)

Hence, associating to each solution x̂ of (7) the tracking error
x̃(τ) = x̂(τ) − xr, we employ the following performance
index

J =

∫ tk+Tp

tk

(
∥x̃(τ)∥2Q + ∥û(τ)∥2R

)
dτ + ∥x̃(tk + Tp)∥2P.

(8)

IV. NUMERICAL EXAMPLE

A CTG policy is employed as generator for the relative
velocity to be followed by the ego vehicle:

v̇CTG = −λ

h
(xvhh+ dref + ϵ)− ϵ̇

h
(9)

where h is the time gap (in seconds), λ is design parameter,
ϵ is the relative distance between the two cars, and dref is
the default distance to be kept between the two vehicles.
In the proposed scenario, saturation of maximum torque
delivered to the wheels is accounted, as |Twh| ≤ 250Nm.
Given a realistic driving cycle, whose motor torque is the
one in Figure 1, the CTG-based MPC is able to cope with
the given reference in order to enhance the efficiency of
the vehicle powertrain, while closely following the reference
prescribed by the CTG policy. The model has been sampled

Fig. 1. Reference torque profile.

at 0.05 s, while the prediction time window is set as Tp =
10Ts. Concerning the MPC weighting matrices, R = 0.05,

Fig. 2. MPC controlled and reference powertrain variables. The reference
signals are drawn in red, the controlled ones in blue.

Fig. 3. Vehicle relative distance. The reference distance is drawn in red,
the controlled ones in blue.

P = diag(0, 0, 10000), R = diag(0, 0, 1). MPC results
of the ACC scenario are plotted in Figures 2-3 From
the simulations results, we can highlight how the MPC
controller, combined to the CTG policy, provides a smoother
torque/acceleration signal then the reference relevant to the
driving cycler. In the ACC scenarios, the distance between
the vehicles oscillated around the set distance, while avoiding
collision along all the driving cycle. As future research lines,
the MPC controller can be tested in a real vehicle. Also, an
economic MPC for reference tracking [4] can be employed
for obtaining still more powertrain efficiency.
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Experimental Validation of Safe MPC for
Autonomous Driving in Uncertain Environments

Ivo Batkovic1,2, Ankit Gupta2, Mario Zanon3, and Paolo Falcone1,4

I. INTRODUCTION

Model Predictive Control (MPC) has been commonly used
in autonomous driving. While it is well-known how to design
an MPC controller such that closed-loop stability w.r.t. a
reference trajectory (or path) is obtained and that constraint
satisfaction holds at all times, the results in the literature
rely on assumptions that are violated in practice. We address
the problem of ensuring the safe operation of an autonomous
vehicle in uncertain environments by relying on the Model Pre-
dictive Flexible trajectory Tracking Control (MPFTC) frame-
work [1], [2], and we show in practice how a safe vehicle
controller can be designed for urban autonomous driving
settings.

II. PROBLEM FORMULATION

We consider a discrete-time nonlinear system defined by

xk+1 = f(xk,uk), (1)

where xk ∈ Rnx denotes the state and uk ∈ Rnu denotes
the control input at time k. The system is subject to state and
input constraints of two categories: a-priori known constraints
h(x,u) : Rnx × Rnu → Rnh , which might be time-varying
but which are fully known beforehand; and a-priori unknown
constraints g(x,u) : Rnx × Rnu → Rng , whose functional
form is known a priori, but whose value is not. In both cases,
the state and input must satisfy h(x,u) ≤ 0, g(x,u) ≤ 0
and all inequalities are defined element-wise. Examples of a-
priori known constraints include engine torque limitations and
braking force, while examples of a-priori unknown constraints
include collision avoidance with other road users.

Due to the nature of the known and unknown constraints,
we use gn|k(x,u) to denote function g at time n, given the
information available at time k. Moreover, we will denote
by gn(x,u) := gn|∞(x,u) = gn|k(x,u), ∀ k ≥ n the real
constraint, since in general gn|k(x,u) ̸= gn(x,u), ∀ k < n.
Note that instead for a-priori known constraints hn|k(x,u) :=
hn(x,u) holds ∀ k by definition. Throughout the remainder
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Università di Modena e Reggio Emilia, Italy falcone@unimore.it

of the paper, we also apply the same notation to the predicted
state and inputs, e.g., xn|k and un|k denote the predicted state
and input at time n given the current time k. In addition, we
will use Iba := {a, a+ 1, ..., b} to denote a set of integers.

We consider the problem of tracking a user-defined parame-
terized reference r(τ) := (rx(τ), ru(τ)) as closely as possible.
Parameter τ is a “fictitious time”: if τ is selected to be time,
its natural dynamics are given by τk+1 = τk + ts, where ts is
the sampling time.

To ensure that requirements (a) and (b) are satisfied in
the urban autonomous driving setting, we use the framework
proposed in [1], where the dynamics of the reference trajectory
are modified using the dynamics for τ given by

τk+1 = τk + ts + vk, (2)

where v is an additional auxiliary control input, and τ comes
as an auxiliary state. The Model Predictive Flexible trajectory
Tracking Control (MPFTC) [1, Section V.A] can then be
formulated as

min
x
τ ,

u
v

k+N−1∑
n=k

qr(xn|k,un|k, τn|k) + wv2n|k (3a)

+pr(xk+N |k, τk+N |k)

s.t. xk|k = xk, τk|k = τk, (3b)

xn+1|k = f(xn|k,un|k), n ∈ Ik+M−1
k , (3c)

τn+1|k = τn|k + ts + vn|k, n ∈ Ik+M−1
k , (3d)

hn(xn|k,un|k) ≤ 0, n ∈ Ik+M−1
k , (3e)

gn|k(xn|k,un|k) ≤ 0, n ∈ Ik+M−1
k , (3f)

xk+n|k ∈ X s
r (τk+n|k), n ∈ Ik+M−1

k+N , (3g)

xk+M |k ∈ Xsafe(τk+M |k) ⊆ X s
r (τk+M |k). (3h)

where k is the current time, N is the prediction horizon
associated with a cost, M ≥ N is the full prediction horizon,
qr and pr are cost functions that penalize deviations from
the reference trajectory r(τ) = (rx(τ), ru(τ)), and w > 0
is associated with the cost of the auxiliary input vn|k. The
predicted state and control inputs are denoted by xn|k and
un|k, respectively. Constraints (3g) and (3h) define a stabiliz-
ing set and a safe set, respectively. Note that Problem (3) can
be seen as a two stage-problem, where the first stage n ∈ Ik+N

k

defines the MPC problem, and the second stage n ∈ Ik+M
k+N+1

defines the terminal set implicitly. This implicit terminal set
formulation relates to the safety design which ensures that the
state xk+N |k is able to reach the safe set Xsafe(tk+M |k) in a
finite amount of time M −N ≥ 0 while satisfying the system
dynamics and the a-priori known and unknown constraint. For
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Figure. 1. The top panel shows an initial prediction for a pedestrian at
time k, while the middle and bottom panels show different predictions at
time k + 1. The middle panel illustrates a model that satisfies (??), i.e.,
satisfying Assumption ??, while the bottom panel does not satisfy (??), hence,
Assumption ?? is also not satisfied.

a more detailed discussion related to the design of Problem (3),
we refer the reader to [1].

Due to the lack of space, we will illustrate the main
assumptions by means of some figures. The first assumption
is that the pedestrian model is consistent, i.e., the predicted
uncertainty cannot increase in future predictions, as illustrated
in Figure 1. The second assumption is that we need to predict
the presence of obstacles at the boundary of the sensor range
in order to guarantee that in case an obstacle is indeed present
the controller already accounted for that possibility. This is
illustrated in Figure 2. Finally, as the uncertainty related to
the presence of other road users cannot be controlled, it grows
infinitely large. In order to deal with that issue, we postulate
the existence of a safe set, i.e., a set in which all a-priori
unknown constraints can be neglected, though possibly other
a-priori known constraints might be introduced. A simple
possibly oversimplistic example of such a set is the case in
which the vehicle stops. For all details we refer teh interested
reader to [2].

III. EXPERIMENTAL RESULTS

We deployed the safe MPC controller on a full-scale Volvo
XC90 T6 petrol-turbo SUV at a closed test track in order
to verify the performance in practice. The vehicle offers
an actuation interface that accepts longitudinal acceleration
requests and steering wheel angle setpoint requests.

Due to the lack of space, we will limit ourselves to comment
that the experimental results displayed in Figure 3 closely
matched the simulation results and successfully avoided col-
lisions with pedestrians. All details of the simulations and
experiments can be found in [2], and a video is avail-

Figure. 2. Situation where the sensor range is not able to see pedestrians
behind the corner of the building.

Figure. 3. The vehicle bounding box is illustrated by the blue box, while
the predicted pedestrian motion is illustrated by the red regions for the real
pedestrians and gray regions for the virtual pedestrians. The opaque box
represents the terminal state, and the line connecting the vehicle bounding box
and the opaque box illustrate the predicted open loop solution. The blue and
red lines denote the traveled history of the vehicle and pedestrians, respectively

able at https://www.youtube.com/watch?v=nS8AFg21MTA&
ab channel=MechatronicsGroupatChalmersUniversity.
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A Dynamic Programming approach

for road traffic estimation

Mattia Laurini, Irene Saccani, Stefano Ardizzoni, Luca Consolini, and Marco Locatelli∗

Many municipalities use systems to measure traffic flows at main roads and intersections. These
systems employ various types of sensors, such as inductive loop detectors, video detection systems,
microwave radar sensors, and LIDAR sensors. In this work, we focus on reconstructing the paths
traveled by users based on available flow measurements. Specifically, we represent a road network
as a directed graph and assume that several traffic flow measurements are available on all or some of
the network’s arcs. Users are divided into distinct groups, each taking a different route, with their
flows modeled through independent Poisson processes. Our primary goal is to determine the routes
taken by each user group and estimate the average rates of the corresponding Poisson processes.

Our research falls within the broader context of Network Tomography, first formulated by Vardi
in 1996 (see [7]). The aim is to estimate the traffic demand of origin–destination (OD) pairs from the
knowledge of traffic flows over certain network links. Ever since, this problem has been extensively
studied, with numerous variations explored (see, e.g., [4]). Network Tomography is crucial not only
in transportation networks but also in data communication networks. Many Network Tomography
formulations assume limited available measurements and attempt to infer link characteristics and
congestion within the network. Previous studies have addressed the problem of selecting minimal
subsets of paths to monitor in order to infer the loss rates and latencies of other network paths (see,
for instance [2]). Typically, traffic flows are assumed to be independent Poisson random processes,
simplifying the problem formulation (see, e.g., Theorem 1.1 in Chapter 5 of [5]).

The main contribution of this work is given by the development of an approach for estimating
traffic demands and road usage in a network, addressing the OD Tomography problem and identi-
fying paths with non-zero flow. The novelty of such approach lies in the combination of Dynamic
Programming, a technique from Computer Science and Control Theory, and Cumulant Generating
Functions, a statistical tool. First, we define a partial order on the paths set and a monotone non-
increasing function, deriving theoretical properties that support a Dynamic Programming procedure
for efficiently solving the problem. By assuming known network topology, this method focuses on de-
termining traffic demands and user paths, offering a detailed analysis of traffic behavior and network
usage. The proposed Dynamic Programming algorithm operates by traversing possible paths and
computing the necessary high-order cumulants to solve the estimation problem. Note that if paths
connecting multiple OD pairs pass through the same measured arcs, only their aggregate contribu-
tion can be determined, not individual demands. This work also relates to studies using higher-order
cumulants and heuristic procedures to reduce the number and order of computed cumulants, with
the proposed method deterministically computing all necessary cumulants for solving the problem.

We tested our algorithm on two well-known benchmark networks, the NSFnet [1] and the Sioux
Falls network [6], depicted in Figure 1 and 2, respectively, using synthetic data where true demands
and paths were known. This allowed us to test the method in a setting in which the exact solution
is known and compare the results obtained with our algorithm with the solutions of the synthetic
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by the Italian Ministry of University and Research, CUP D93C22000460001, “Ecosystem for Sustainable Transition in
Emilia-Romagna” (Ecosister).
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tests. As expected, the error in estimating traffic demands decreases as measurements data sets
increase. This improvement is due to the increased accuracy of estimating joint cumulants with more
measurements. Despite the theoretical discussion, we acknowledge that in practical applications
computing cumulants of orders higher than three can be numerically unstable and sensitive to noise
and outliers (see, for instance, [3]). Future works aim at adapting the algorithm to balance the use
of higher-order cumulants while avoiding their drawbacks, making the procedure more robust.

Figure 1: Graph of NSFnet. Figure 2: Graph of Sioux Falls.
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Facoltà di Ingegneria, Libera Universitá di Bolzano, 39100 Bolzano, BZ, Italia

Corresponding author: bhaskarvarma@ieee.org

Abstract

The paper proposes a decentralized optimization approach based on opinion dynamics, for deci-
sion making in multi robot systems, during trajectory planning in dynamic environments to avoid
deadlocks and indecision’s.

Keywords: trajectory planning, opinion dynamics, decision-making

1. Introduction

Multi robot trajectory planning has been gaining attention in recent years, due to its application
in many fields. Consider a collection of multiple robots, connected vehicles, swarm of drones or even
heterogeneous agents collaborating for a common goal. Tasks like path re-planning and trajectory
optimization for a single robot, in a real time environment with dynamic obstacles, are challenging.
Such tasks are even more complex when we consider multiple robots with different goals because
often robots fall into indecision’s resulting in deadlocks and collisions.

There are several centralized [1] architectures where the decision making is done by a single
agent, or by a centralized system. But most of the centralized architectures neglect the feedback
from different agents and merely work on priority-based algorithms, which are not efficient in the
real world. On the other hand, decentralized [2] architectures, where each agent has equal decision
power, provide more agility and overall safety for the systems working in environments with dynamic
obstacles and disturbances. Although many methods have been proposed in the literature to ensure
safe navigation of multi robot systems, preventing deadlocks in a decentralized fashion with global
consensus still remains an open problem.

2. Opinion dynamics induced control

This is a recently developed method for decision making in multi agent systems, which is gaining
interest as it makes use of cooperative feedback from all agents in the form of opinion [3] and
attention dynamics. The theory behind this approach works on breaking indecision in large groups
using bifurcation theory [4]. As shown in Figure 1, during trajectory planning every agent has
multiple options while maneuvering for its task. Based on the option chosen by a single agent, we
calculate the influence of it, on other agents in the form of opinion dynamics. An agent’s opinion
is influenced by the opinions of others only when it’s attention [5] exceeds a critical level.



Figure 1: Hypothesized model

3. Remarks

This methodology, with application to ground vehicles for trajectory optimization, is further
differentiated to optimize the longitudinal and lateral motion of the robot separately. The model
provides an analytically tractable solution to the multi robot trajectory planning problem and also
guarantees to break indecision in a collective manner with global consensus. Integrating it with
suitable control method becomes crucial in yielding successful results.
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Abstract

This work investigates an alternative approach to current control systems for the Automated Driving (AD) of shuttle vehicles on
dedicated roads. The proposed solution decouples the problem into two levels: a Deep Deterministic Policy Gradient (DDPG)
Reinforcement Learning (RL) agent and a dedicated vehicle logic generating Virtual Lane (VL) data to eliminate redundancy and
allow for smooth lane changes on curved roads. The training uses an environment defined through a model-based simulation,
exploiting MatLab and Simulink tools, and has been conducted following a Curriculum Learning strategy. The performance of the
introduced approach have been evaluated by testing the agent capabilities and exploring its behavior in the presence of external
disturbances in the controlled states.

Introduction
Systems for Automated Driving (AD) leverage a great va-
riety of cutting-edge technologies, such as Reinforcement
Learning (RL), to perform the principal Dynamic Driving
Tasks (DDTs) such as Adaptive Cruise Control (ACC), Lane
Keeping (LK), and Lane Change (LC) [1].
Different RL implementations, methodologies, and paradigms
can be found in literature: path, trajectory, and motion plan-
ning, optimization of actuation control, complex navigation
and traffic decision-making, and lane position control are just
a few examples outlined by [2] survey.
One of the most common driving scenarios in RL for AD liter-
ature is the racing one, where the need to run with the highest
feasible speed while avoiding crashes is easily modeled by a
reward function. These solutions exploit mainly a black-box
approach, where the scenario readings given by the simula-
tor is directly used as observation input by the agent without
any pre-elaboration. As an example [3], and [4] present Deep
Deterministic Policy Gradient (DDPG) agents for fast driving
on the simulated racing circuit controlling acceleration, brake,
and steering angle of the vehicle. The highway environment is
another of the most important areas of application for AD, and
the literature provides several examples of RL being used to
directly control or support various subsystems for DDTs. In
[5] a RL system for LK, comparing the performances of Deep
Q-Network (DQN) and DDPG algorithms on a simulation sys-
tem where the vehicle, initialized in a random heading angle
and tracking error, is required to follow a highway-like road
with constant curvature, controlling the steering angle.
The urban environment is the most complex, characterized by
sharper curves and complex interactions with other actors on
the road. This paper presents an RL-based AD approach. The
approach exploits already available data from state-of-the-art

*This work is partly supported by the project Piano Nazionale di Ripresa
e Resilienza (PNRR)-Next Generation Europe, which has funded by the
European Union and the Italian Ministry of University and Research – DM
117/2023.
†Article accepted at "2024 Modeling, Estimation and Control Conference"
(AACC, IFAC)

lane boundary and road geometry recognition systems imple-
mented on modern cars. This prevents a black-box solution
that, starting from raw data like a camera image, directly com-
putes the vehicle control input. The advantages are two-fold:
the algorithm can focus on specific tasks while, on the other
hand, the structure is kept simple. The work aims to present
a new framework where a suitable Virtual Lane Logic (VLL)
supports the learning of the RL agent and its control of the
system, generating data for executing LC tasks smoothly and
safely, even in the case of curved roads. This enhancement,
while reducing the size of the needed observation input of
the agent, allows the utilization in an urban environment of
simpler neural networks (of dimension similar to the one used
in the cited racing solutions) than the complex convolutional
ones exploited in this scenario type.

Problem set-up

The goal of this work is to develop an AD solution for shuttle
vehicles oriented to the fourth SAE level [6], capable of driving
on dedicated roads. In this context, the proposed solution fo-
cuses on a low-complexity scenario where the shuttle operates
in a restricted area without vulnerable road users. The vehicle
can perform a complete range of maneuvers. In particular, it
can start and stop at a pre-determined point and merge into
and out of the main traffic lane. To meet all the application
requirements, restrictions are placed on the vehicle’s behavior,
such as limiting the maximum speed to 50 km/h.
The proposed solution is developed and tested on a properly
designed scenario. The shuttle route is placed in Torino, Italy,
in a neighborhood of Politecnico area (see Fig. 1), with 12
strategic shuttle stop stations in an urban scenario. This road
network is ideal for testing AD solutions thanks to the presence
of vehicle-to-everything (V2X) facilities. In a V2X applica-
tion framework, the infrastructure provides the vehicle with all
information about speed limits and destination locations. The
infrastructure also provides constraints on the required path
length and the target lane for LC maneuvers.
The VLL can be suitably adapted to different scenario condi-



Figure 1: Bird’s eys view of the target circuit with interest map
section of Torino, Italy, in the background.

Figure 2: Main flow of data inside the control architecture of the
solution.

tions and provided data. In the proposed solution, the agent
receives the Virtual Lane (VL) data as input, as opposed to
raw and redundant information produced by sensors. Thus, the
VLL represents an intermediate layer capable of extending the
usability of the trained networks to different data structures.
The proposed framework separates the problems of planning
and control. This increases the flexibility and explainability
of the solution, enhancing the ability to understand the con-
troller’s behavior and intervene in case of evident biases. The
core of the vehicle control is represented by a DDPG agent that
interacts with the environment, as shown in Figure 2, receiv-
ing Observations and computing Actions. In coherence with
SAE Level 4 application, the Agent acts on both the vehicle’s
longitudinal acceleration and steering speed. The Observation
set is composed of 35 features mainly describing the vehicle
state, the virtual lane, and the infrastructure information. Since
DDPG is a deterministic agent, during learning, an Ornstein-
Uhlenbeck noise structure is superimposed to the actions taken
to allow for exploration.

Results
After suitable training a comprehensive simulation is carried
out to evaluate the effectiveness of the proposed solution. The
simulations have been performed in the MatLab and Simulink
environments. The Automated Driving toolbox and the Vehicle
Dynamics Blockset have been employed to simulate, respec-
tively, the desired path and the vehicle dynamics.
In the graph illustrating the input control action (Figure 3), it
is noticeable that both the vehicle’s longitudinal acceleration
and steering speed are consistently within the design limits.
In addition, the vehicle can accurately track the VL with a
maximum error of about 30 cm (Figure 3 A) while maintain-
ing lateral acceleration (Figure 3 B) within the design comfort
range (| ˙vlat| < 1.3m/s2). Satisfactory results are also ob-
tained for the vehicle’s steering angle (Figure 3 C) and speed
(Figure 3 D). In particular, the latter shows how the shuttle
accelerates smoothly, reaches and maintains the maximum
allowed speed of 30 km/h, and finally slows down to stop at
the target station.
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Figure 3: Action signals and vehicle behavior during the route
execution.

Conclusion
This work presented a new framework for executing the main
DDTs required in an AD SAE level 4 shuttle solution. It
is based on the exploitation of an RL agent able to perform
both ACC and LK, supported by a dedicated VLL that rapidly
generates the virtual lane data, enabling the execution of LC
maneuvers independently from the road geometry. The ap-
proach showed great potential, demonstrating a high ability to
control the vehicle, meeting both comfort requirements and
vehicle constraints, and overcoming potential disturbances.
The proposed VLL implementation has several advantages
over standard RL methods. One of the main is the capability,
thanks to VLL, of avoiding convolutional and recurrent neural
networks. The proposed strategy exploits standard data already
available from vehicle onboard safety systems, such as lane
boundaries recognition, making it integrable with current tech-
nology. This streamlined approach not only makes the training
process less complex but also enhances the adaptability of
the trained actor, enabling it to handle unforeseen scenarios
effectively through a strategic redesign of the VLL.
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Systematic Modeling of a Steering Vehicle

Differential Using Power-Oriented Graphs

Davide Tebaldi and Roberto Zanasi

Abstract—This extended abstract addresses the modeling and
simulation of a Steering Vehicle Differential for automotive
applications.

I. INTRODUCTION

One of the most important physical systems in the vehicle

powertrain is the differential [1], [2], namely the element

being responsible for properly distributing the engine motive

torque among the vehicle wheels so as to increase the level of

control on the vehicle itself. Different graphical formalisms,

including Bond Graphs, Energetic Macroscopic Representa-

tion and Power-Oriented Graphs (POG) [3], are available in the

literature for modeling physical systems in different energetic

domains. In this extended abstract, the approach presented

in [4], [5] based on the POG technique is used to model

a steering vehicle differential. Next, the simulation results

showing the clutches locking/unlocking states are presented.

II. MODELING

The differential in Fig. 1 can be modeled as follows:

{

L ẋ = Ax− STKssign(Sx) +B τ

y = Cx+D τ

, where

L=

[

J 0

0 K-1

]

, A=

[

−Bω −B∆ω−RTBKR −RT

R 0

]

, B=

[

I

0

]

,

C = BT, D = 0, ST =
[

ST

ω 0
]

, x =

[

ω

F

]

,

ω=
i

|[ ωi ]|
NJ

, τ =
i

|[ τi ]|
NJ

, J=
i

|[ Ji ]|
NJ

, Bω=
i

|[ bi ]|
NJ

,

F=
ij

|[ Fij ]|
NK

, K=
ij

|[ Kij ]|
NK

, BK =
ij

|[ dij ]|
NK

,











NJ = {s, d, p, a, b, c, e, f}, nJ = dim(NJ ) = 8,

NK = {sd, dc, pa, pb, ce, cf}, nK = dim(NK) = 6,

NB = {da, db, ae, bf}, nB = dim(NB) = 4.
(1)
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Fig. 1. Structure of the considered steering vehicle differential.

Model (1) is in a one-to-one correspondence with the POG

block scheme of Fig. 2. The relative friction matrix B∆ω is:
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while the radii matrix R is given by:
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.

The matrix Sω and the control matrix Ks are defined as:

Sω=
[

0 0 0 −1 0 0 1 0

0 0 0 0 −1 0 0 1

]

, Ks=
[

Kea 0

0 Kfb

]

.



✲

✻

sign()

✻

−Ks

✻

✛ ✛ST

ω

✲Sω
✲ ❄

τ

Gears Inertias

✲ ✛
❄
1

s

❄

J-1

❄
ω

✛ ✲

✛ ✛

BJ

✻

✻
✲ ✲

Energy
Conv.

✲ R ✲

✛ ✛RT

Tangential
Springs

✛ ✛

✻

1

s

✻

K

✻F

✲ ✲

✛

BK

✻

Fig. 2. Full POG scheme of the considered steering differential.

TABLE I
STEERING DIFFERENTIAL: SIMULATION PARAMETERS.

ra = 4.68 cm rc1 = 3.6 cm

rc2 = 6.48 cm rd1 = 16.2 cm

rd2 = 19.8 cm re = 14.4 cm

rp = 3.6 cm rs = 4.32 cm

bda = bdb = 0.05 Nm/rpm bae = bbf = 0 Nm/rpm

Ji = 0.0658 kg m2 and bi = 0.05 Nm/rpm, for i ∈ NJ in (1)

Kij = 35 · 103 N/m and dij = 160 N s/m, for i ∈ NK in (1)

When K → ∞, it can be proven that the following reduced-

order model can be obtained:

L1 ẋ1=A1 x1 +B1τ − STKssign(Sx) ,

where L1 = QT

1
JQ1, A1 = −QT

1
BJQ1, B1 = QT

1
and Q1

is a properly defined transformation matrix [4], [5].

III. SIMULATIONS

The simulation of the steering differential of Fig. 1 is

addressed in order to: 1) compare the results of the full

and reduced-order models; 2) to verify the correctness of

the clutches modeling. The simulation is performed using

the system parameters in Table I, starting from zero initial

conditions and applying an input torque τs = 100 Nm. The

simulation results are shown in Fig. 3, from which the good

superposition between the characteristics obtained using the

full and reduced-order models can be appreciated. At t = 1.8
s, the parameter Kea of the control matrix Ks undergoes

the transition Kea = 0 → 104, in order to simulate the

locking of the left clutch shown in Fig. 1. At t = 3.6 s,

the parameter Kea of the control matrix Ks undergoes the

transition Kea = 104 → 0, in order to simulate the unlocking

of the left clutch shown in Fig. 1. From the center subplots, it

can be seen that the involved angular velocities ωa and ωe are

indeed kept equal to each other when the left clutch is locked.

The locking and unlocking of the right clutch in Fig. 1, using

the parameter Kfb of the control matrix Ks, occur at t = 5.4
s and t = 7.2 s, respectively, and are shown in the lower

subplots of Fig. 3. The same observations as those made for

the left clutch locking/unlocking simulation also apply to the

right clutch locking/unlocking simulation: indeed, the involved

angular velocities ωb and ωf are kept equal to each other

when the right clutch is locked. The obtained results show

the correctness of the differential and clutches modeling.
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Fig. 3. Results of the simulation on the steering differential of Fig. 1 using
the: full model (colored) and reduced-order model (red dashed).

IV. CONCLUSIONS

In this extended abstract, the systematic modeling and

simulation of a steering vehicle differential using power-

oriented graphs have been addressed. The two presented

dynamic models of the steering differential exhibit a different

degree of detail: a full model which also accounts for the

gears elastic interaction and a reduced-rigid model neglect-

ing it. Both dynamic models allow to effectively simulate

the differential dynamics and the locking and unlocking of

the differential clutches, and have been obtained applying a

fully systematic procedure using the power-oriented graphs

modeling technique. The simulation results have shown the

good superposition between the results given by the full and

reduced-order models of the considered steering differential.
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Huber-based Unscented Kalman Smoother

with application to Earth observation missions

Michele Coco, Martina Mammarella, Cesare Donati, Federica Paganelli, Francesco Evangelisti

In the pathway towards fully autonomous spacecraft, space systems shall be designed to operate in an unpredictable
and partially unknown environment. In this framework, the problem of sensor fusion is typically handled exploiting
Kalman-like filtering techniques. A valid alternative when dealing with non-Gaussian probabilities are the so-called
Particle Filters (see e.g., [1]), which use a set of samples to represent the posterior distribution of a stochastic process
given the noisy and/or partial observations. The Unscented Kalman FIlter (UKF) belongs to the KFs family. However,
it is based on a sigma-point method that shares some similarities with the PFs. Indeed, analogously to Kalman filters,
the state distribution is represented by Gaussian random variables. However, UKF uses a minimal set of carefully
chosen sample points (called sigma points), similar to PF samples, that properly capture the true mean and covariance
of the states and are propagated through the nonlinearity.

To deal with non-Gaussian uncertainties and outliers, it is possible to extend the UKF scheme relying on the Huber
method and obtaining Huber-based UKF (HUKF). Specifically, the Huber approach is a generalization of the maximum
likelihood approach [2] and is based on the combination of minimum ℓ1– and ℓ2–norm estimators to improve robustness
against deviations from the commonly assumed Gaussian probability density functions, thus making the HUKF able to
solve non-Gaussian distribution problems efficiently. In detail, the standard cost function, defined as the sum of squared
residuals ei, is replaced by an indicator functional J =

∑m
i=1 ρ(ei), where ρ(ei) is a blend of the ℓ1 and ℓ2 norm functions,

such that if |ei| ≤ γ than ρ(ei) = 1
2e

2
i , otherwise ρ(ei) = γ|ei| − 1

2γ
2. Here, the threshold parameter γ has a great

impact on filtering precision and robustness. Hence, for γ → 0, the robustness effect increases as more observations are
treated as probable outliers, whereas for γ → ∞ the Huber function behaves like a least square minimization algorithm
and the HUKF as a standard UKF. While the HUKF is able to reduce the contribution of uncertain measurements
in the computation of the estimator, on the other side this results in an increased variance of the estimator. Indeed,
because the corresponding weighting function ψ(ei) is such that ψ(ei) = 1 for |ei| ≤ γ and ψ(ei) = γ/|ei| otherwise,
the measurement noise variance σ2

i is modified accordingly. Hence, as the residual ei grows larger than γ so it does
its variance as it takes into account the probability that the measurement is an outlier. Vice versa, for ei ≤ γ, the
observation is expected to follow the assumed (Gaussian) distribution, and the variance remains unchanged.

In this abstract, we propose a Huber-based Unscented Kalman Smoother (HUKS), combining the benefits of a
HUKF-based filtering techniques for nonlinear systems able to handle non-Gaussianity similarly to PFs with an optimal
smoother for balancing the effects on the measurements variance. Specifically, we integrate an optimal smoother into the
filtering scheme to incorporate also a memory characteristic, thus improving the state estimates and error covariances by
harnessing information contained in the entire available data set. In this way, we obtain a forward Huber-based UKF that
processes the measurements, followed by a backward smoothing step over past data and given future observations, which
reduces the measurement variance. Indeed, in autonomous rendezvous and proximity operations scenarios, adaptive
filtering can help mitigate numerical sensitivity and inconsistent filter performances [3]. In this context, applying
smoothing enhances the filter’s adaptability and improves state estimation accuracy [4]. Additionally, integrating the
Huber approach addresses the limitations of assuming Gaussianity, which is critical given that typical sensor systems.
Developing a HUKS can be a significant step towards understanding the benefits of integrating these solutions.

The efficacy of the proposed approach is validated in simulation for an Earth-observation scenario involving a
small satellite equipped with commercial-off-the-shelf sensors. In particular, we assume that the GPS sensor has a
probability p of providing accurate position measurements y, which adheres to the expected Gaussian distribution for
the measurement noise, and a probability of 1− p to fail, resulting in inaccurate measurements (outliers) that deviate
from the expected distribution for measurement noise. Figure 1 highlights the impact of the parameter γ on the HUKF
errors as the probability p varies. Specifically, we observe that lower values of γ result in reduced errors due to the
filter’s enhanced ability to reject outliers. However, this comes at the expense of an increment of the associated standard
deviation. Conversely, higher values of γ lead to a higher likelihood of accepting outliers as valid measurements, resulting
in increased errors, especially in cases where the probability of sensor failures is high. These trends are also confirmed
by the RMSE reported in Table 1. Figure 2 compares the estimated positions using the Huber and the smoother
for p = 1, i.e., no sensor failure, and p = 0.5. The Huber-based filters, i.e. HUKS and HUKF (first row), provide
superior estimation accuracy compared to classical filters, such as UKS and UKF (second row). This improvement is
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Figure 1: Position root mean square error e and standard deviation σ of the HUKF for different p, with respect to γ.

particularly evident when p = 0.5 (right column), as the higher probability of sensor failure leads to a greater number of
outliers, which significantly degrade the predictions of UKF and UKS. As it can be noticed, the adoption of the Huber
approach results in increased conservativeness and, consequently, higher standard deviations. However, we observe
how the introduction of a smoother can mitigate this effect, thus compensating for the higher variances introduced
by the Huber-based approaches. Last, Table 1 presents the RMSE and the average execution time for each tested

Figure 2: Comparison of position estimation and associated standard deviation for the different filters, with γ = 1.345
and p = 1 (left column) and p = 0.5 (right column).

filter. Specifically, we can observe that the small increase in computational time associated with the combinations of
Huber-based and smoother techniques represents a trade-off for the improved robustness against outliers.

UKF UKS HUKF HUKS

0.3366 0.2992 0.3696 0.2946

(a)

UKF UKS HUKF HUKS

2.3 ms 2.5 ms (+10%) 2.39 ms (+4%) 2.72 ms (+18%)

(b)

Table 1: (a) RMSE for p = 1 and (b) average execution time.
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Deep Deterministic Policy Gradient
Control of Type 1 Diabetes

Federico BALDISSERI∗, Danilo MENEGATTI, and Andrea WRONA

Abstract— This paper introduces a novel Reinforcement
Learning-based controller for autonomous glycemic regulation
in the treatment of type 1 diabetes, building on the Deep
Deterministic Policy Gradient algorithm. The proposed control
method is validated through in-vitro simulations on the Bergman
glucoregulatory model, proving that it successfully preserves
healthy values of blood glucose concentration, while overcoming
both standard clinical practice and classical model-based control
techniques in terms of both control effort and computational
efficiency for real-time applications.

Index Terms— Deep Reinforcement Learning, Deep Determin-
istic Policy Gradient, Type 1 Diabetes.

I. INTRODUCTION

Type 1 diabetes patients are completely dependent on ex-
ternal insulin administration. A safe and effective glucose
regulation is of paramount importance since hyperglycemia
can lead to cardiovascular diseases and blindness, while hypo-
glycemia can lead to coma and death [1]. Several classes of
control algorithms have been used in academic literature, such
as proportional integral derivative (PID) control and Model
Predictive Control (MPC). Deep Reinforcement Learning can
be enforced to develop fully automated algorithms that can
provide personalized control under varying conditions, lever-
aging deep neural networks to automatically learn meaningful
representations from high-dimensional and complex data, thus
being more efficient in learning optimal control policies [2].
No work in academic literature has proposed data-driven
insulin control strategy leveraging continuous action spaces,
thus avoiding a quantization which usually yields information
losses. This work overcomes the highlighted limitation in
previous academic literature by applying a continuous control
logic based on Deep Reinforcement Learning to the problem
of autonomous insulin regulation for patients suffering from
type 1 diabetes.

II. CONTROL METHODOLOGY

Deep Deterministic Policy Gradient (DDPG) is an advanced
Deep Reinforcement Learning algorithm that is able to cope
with continuous state and action spaces. It is an extension of
the popular Deterministic Policy Gradient algorithm [3], com-
bining deep neural networks with the principles of actor-critic
methods. It uses neural networks as approximation functions
to learn the optimal policy, while continuously evaluating the
action quality during the training phase. In particular, the agent
is denoted by four neural networks: the first two are the actor
and critic networks, whereas the last two are the so-called
target actor and target critic, copies of the first two with slowly
updated parameters used to stabilize the learning phase. The
DDPG methodology is outlined in Algorithm 1.

All authors are with the Department of Computer, Control and Management
Engineering “Antonio Ruberti”, Sapienza University of Rome, Italy. Emails:
{baldisseri, menegatti, wrona}@diag.uniroma1.it

∗Corresponding author. Email: baldisseri@diag.uniroma1.it

Algorithm 1 DDPG algorithm
1: Randomly initialize critic network C(s, a|θC) and actor
A(s|θA) with weights θC and θA

2: Initialize target network C′ and A′ with θC
′ ← θC and

θA
′ ← θA

3: Initialize replay buffer R
4: for e = 1, 2, . . . , E do
5: Define the random process noise Ne for action explo-

ration
6: Receive initial observation state s1
7: for t = 1, 2, . . . , T do
8: Select action at = A(st|θA) +Ne

9: Execute at = A and observe rt and st+1

10: Store transition (st, at, rt, st+1) in R
11: Sample N -transitions random minibatch from R
12: Set yi = ri + γC′(si+1,A′(si+1|θA

′
)|θC′

)
13: Update critic minimizing the loss:
14: L = 1

N

∑
i(yi − C(si, ai|θC))2

15: Update actor policy using the policy gradient:
16: ∇θAJ ≈ 1

N

∑
i∇aC(s, a|θC)|si,A(si)∇θAA(s, |θA)|si

17: Update target networks, with τ ≪ 1:
18: θC

′ ← τθC + (1− τ)θC
′

19: θA
′ ← τθA + (1− τ)θA

′

20: end for
21: end for

III. SYSTEM MATHEMATICAL MODELING

The Bergman Model is the simplest model that effectively
describes the blood glucose-insulin regulatory system [4]. It is
characterized by the following equations:

ẋ =

−p1G− (G+Gb)X + d
−p2X + p3I
−nI + u

 , (1)

where G denotes the plasma glucose concentration, X the
insulin’s effect on net glucose disappearance, I the insulin con-
centration in plasma, u is the controlled insulin infusion rate,
d the measurable meal disturbance, while Gb, Ib, p1, p2, p3, δ,
and n are parameters of the model. A physiological constraint
on the amount of injected insulin is imposed: 0 ≤ u(t) ≤
4.27 µU/min. This system translates to the MDP framework
in the following way: the state space is S = {(G̃, d)}, the
action space is A = {u|u ∈ [0, 4.27] µU/min}, and the reward
function is:

r(G) =



1, if 70 ≤ G ≤ 120,

0.3, if 120 < G ≤ 160,

0.1, if 50 ≤ G < 70

−0.4− (G−160)
200 , if 160 < G ≤ 280,

−0.6− (G−50)
100 , if 10 ≤ G < 50,

−1, otherwise.

(2)
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TABLE I
KPIS COMPARISON OF THE USED CONTROL LOGICS

KPI CP PID NMPC DDPG

Minimum glycemic value [mg/dl] 71 51 75 75
Maximum glycemic value [mg/dl] 172 192 116 142
Time in hypoglycemia [min] 0 0 0 0
Time in hyperglycemia [min] 20 33 0 0
Total injected insulin [µU] 27.6 41.5 89.4 93.6
Computing time [sec] 1.7× 10−6 2.9× 10−6 2.4× 10−2 2.1× 10−3

Maximum control effort peak [µU] 0.69 0.19 4.68 0.94

Fig. 1. Profile of the daily blood glucose concentration obtained with the
analyzed control logics: clinical practice (blue), PID (green), MPC (yellow),
and DDPG (red).

Fig. 2. Daily evolution of the control effort enforced by the analyzed control
logics: clinical pratice (blue), PID (green), MPC (yellow), and DDPG (red).

IV. SIMULATIONS AND RESULTS

Disturbance is simulated by assuming that throughout a day
three meals are consumed, cointaining 60, 110 and 90 grams of
carbohydrates respectively. Both the actor and critic share the
same neural architecture composed of three layers, the first two
of 512 and 128 neurons with ReLU activation function, and the
last one of one neuron only, with hyperbolic tangent activation
function for the actor. The DDPG agent is trained for E = 150
episodes, each one lasting T = 1440 [min], thus for a total
of 1440 steps (T/dt), converging to the maximum feasible
value given the reward design illustrated in (2). Figures 1
and 2 illustrate respectively the daily profile of the blood
glucose concentration and of the control effort enforced by the
corresponding trained model, as well as by the other control
logics illustrated in the following.

Benchmark comparisons are conducted with standard clin-

ical practice (CP), Proportional Integral Derivative (PID)
control, and Nonlinear Model Predictive Control (NMPC).
With the first two methods, hyperglycemic episodes occur,
in particular with PID since it tracks a reference by mini-
mizing error without including bounds. The NMPC controller,
analogously to the DDPG controller, effectively prevents both
hyperglycemic and hypoglycemic episodes, the latter presents
some advantages with respect to the former. First, performing
inference with the DDPG controller is much faster (by an
order of magnitude) than solving the NMPC optimization
problem; although with the used sampling time such difference
results negligible, it is expected that in future works, using
more complex glucoregulatory models, the superior speed of
the DDPG contorller makes it more suitable for real-time
applications with respect to NMPC. Moreover, the peaks of the
NMPC control effort reach much higher values with respect
to the DDPG controller, reaching saturation at the maximum
limit imposed by the physiological constraint on the amount
of administrable insulin. The clinical relevance of lowering
the maximum control effort peak consists of minimizing the
discomfort of the patient, reducing the risk of hypoglycemia,
and improving the overall glycemic control since rapid drops
and increases in blood glucose concentration levels can be
destabilizing. Table I synthesizes the Key Performance Indi-
cators (KPIs) that are useful to compare the outcomes of the
four presented control logics.

V. CONCLUSIONS

The proposed control logic shows superior performances
with respect to the others in terms of insulin regulation,
reducing control effort peaks and computation time. Future
works shall tackle the limitations of this study: more complex
glucoregulatory models may be used in order to describe
more realistic scenarios in daily life of diabetic patients, with
the introduction of additional disturbances such as stress and
physical activity. Moreover, additional DRL algorithms, such
as SAC, PPO and TD3 will be tested to compare performances,
and domain randomization techniques will be employed to
improve the generalization capabilities of the DRL agents.
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I. EXTENDED ABSTRACT

Antibiotic-resistant bacteria have emerged as a significant global
threat to public health [1]. Both FAO and WHO ranked antimicrobial
resistance (AMR) as one of the top ten global helath threats [1]. By
2002, AMR was already responsible for 60% of hospital infections
[2], and it has since become one the leading causes of death
worldwide, with 1.27 million deaths attributed to AMR in 2019 [3]. If
current trends continue, AMR is projected to cause 10 million deaths
each year by 2050 [3], [4]. The speed of onset and spreading of new
AMR strains outclasses the development of new antibiotic molecules
by the pharmaceutical industry. Therefore, new approaches need to
be devised to counter AMR. Multiple synergistic mechanisms are
involved in AMR, operating both at the single bacterium level, via
expression of AMR-promoting genes, and at bacterial community
level, where bacteria communicate to coordinate population-wide
actions. One such communication system is Quorum Sensing (QS),
which bacteria use to synchronize behaviors that promote AMR by
means of diffusible signal molecules [5].

To face the challenge posed by AMR, exploring alternative treat-
ments for bacterial infections is crucial [6]. In particular, Quorum
Quenching (QQ), namely the inhibition of QS mechanisms, has been
proposed as a promising approach for therapeutic strategies that
consider QS as a possible target [2]: promising studies were aimed
at discovering QS inhibitors and designing QQ synthetic circuits to
treat bacterial infections by reducing the activation of antimicrobial
resistance [7], [8]. Understanding how QS regulates gene expression
is crucial to design effective QQ strategies that control the QS
communication system.

Even though bacterial species differ in QS-associated genes and
signal molecules, the overall mechanism is the same (Fig. 1): when
the sensed bacterial population density is low, each cell produces
low basal levels of signal molecules, which are also released out
of the cell and gradually diffuse into the environment. As the cell
population increases, the signal molecules accumulate inside and
outside the cells. Inside the bacteria, these signaling molecules bind to
a transcriptional regulator (receptor), and the resulting active complex
induces the transcription of specific QS-regulated genes. In particular,
the production of signal molecule synthases is up-regulated, which
gives rise to a positive feedback loop that self-induces the synthesis
of more signaling molecules (therefore called autoinducers).

Mathematical models and systems-and-control approaches are pre-
cious to enable a deeper understanding of the QS machinery through
both theoretic analysis and computational studies, and also to design
control strategies that either enhance Quorum Sensing (when it is
desired to perform a prescribed functionality) or suppress it (to hinder
the activity of pathogens).

1) Contributions: We present a systems-biology model that high-
lights the key structural features of QS. By analyzing two pivotal QS

Fig. 1: Quorum sensing mechanism.

architectures, we gain insights into the interactions and cooperative
behaviors of bacteria.

We mathematically model the following QS synthetic circuit ar-
chitectures (see Fig. 2.1):

(i) The single-feedback QS architecture in which a single positive
feedback loop autoinduces the synthesis of the signal molecule
(model in [9]);

(ii) The double-feedback QS architecture which includes an addi-
tional positive feedback loop enhancing the synthesis of the
signal molecule receptor (model in [9]).

We compare their equilibria and the asymptotic behavior of the
system trajectories (Fig. 2.2). For both QS structures, our analysis
reveals a bistable behavior, where crossing a threshold in the number
of cells drives the system from a low stable equilibrium (associated
with the OFF state of the related genes, at low cell numbers) to
a high stable equilibrium (associated with the ON state and with
the activation of AMR-related genes, at high cell numbers); the
presence of hysteresis is shown to confer robustness to the QS
mechanism, once it has been activated, with respect to disturbances
and fluctuations in the number of cells.

By comparing the bifurcation diagrams for the two models in Fig.
2.2, we can observe that the presence of the second positive feedback
definitely increases the range of hysteresis notably improving the ro-
bustness of the system with respect to fluctuations in the cell density.
Moreover, the maximum steady- state concentration of synthase per
cell is much larger in the double-feedback system, leading to a much
higher stable equilibrium in the ON state.

We then perform an extensive sensitivity analysis on model pa-
rameters, not only to possibly generalize the model to further genetic
contexts, but also to explore biological variability that can rise from
external stimuli and environmental changes.

Finally, building upon the previous results, we investigate Quorum
Quenching strategies for QS inhibition, to support a model-driven
rational design of tools in synthetic biology; in particular, QQ can
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Fig. 2: 1) Schematic of a generic QS network triggering AMR-related genes: the single positive feedback architecture, without the dashed red arrow,
includes promoter P2; the double positive feedback architecture, including the dashed red arrow, only has promoter P1; 2) Bifurcation diagrams of
steady-state concentration of synthase per cell varying cell density for the single- and double-feedback QS systems; 3) Effects on the synthase (called
LuxI) bifurcation diagram of four different QS inhibition strategies: extracellular autoinducer (AHL) degradation (panels a-c), receptor sequestration
(panels d-f), LuxI synthesis reduction with CRISPRi (panels g-i), post-transcriptional interference with RNAi (panels j-l). In each plot, the bifurcation
diagrams are computed for increasing values of the inhibition strength. Dashed vertical lines correspond to the maximum cell density achievable for
E. coli in a culture environment. In panels b, e, h and k the bifurcation diagrams are computed for the dynamics of the single-feedback Lux QS
model, while the double-feedback Lux QS model dynamics are considered in panels c, f, i and l.

be achieved by degrading extracellular autoinducers, by sequester-
ing the receptors to which autoinducers bind, or by reducing the
production of autoinducer synthases by either CRISPRi or RNAi -
at transcriptional or translational level, respectively (Fig. 2.3). We
mathematically model four QQ techniques based on four mechanisms
of different nature and prove that, in all cases, their impact on the
QS system can be captured by varying specific model parameters.
We then simulate and compare the steady-state behavior of the two
synthetic QS systems in the presence of these four QQ strategies:
the resulting effects on both systems prove their potential efficacy,
and reveal critical thresholds that prevent the activation of QS
communication by hampering bistability and making sure that the
system exclusively admits the low equilibrium. To corroborate the
effectiveness of these inhibition strategies, it is noteworthy that the
parameters targeted by these QQ approaches are among the critical
factors that most significantly influence the behavior of the system,
as demostrated by the sensitivity analysis. Our study thus paves the
way to devise and experimentally design QQ strategies that hinder
the activation of the QS mechanism and of AMR-related genes in
pathogens.
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Model-based control is gaining an increasing interest in the last decades, since it allows the design
of very sophisticated feedback regulations accounting for the innate dynamics of the system under
investigation. Within biomedical frameworks, minimal models are often exploited since they allow
to catch the basic relationships among the involved variables without explicitly detailing all the
physical/molecular mechanisms: they can be easily identified according to standard perturbation
experiments, and allow the synthesis of affordable and readily implementable control laws. As far
as tumour growth models are concerned, starting from the seminal paper [1] (proposing an
Ordinary Differential Equation (ODE) model of the vascular growth of tumours characterized by
low dimension and minimal number of parameters) several theoretical/experimental results have
been achieved, dealing with model extensions (see [2, 3]) and closed-/open-loop anti-angiogenic
drugging (see, e.g. [4-8), possibly combined with chemotherapy treatments (see, e.g. [9, 10]).
More recently, models of tumour growth have been proposed [11-13] as coming from the

formalism of Chemical Reaction Network (CRN) [14]. The advantage of such an approach is that

CRN can be straightforwardly modelled according to the stochastic framework implemented by the

Chemical Master Equations (CME) [15], able to account for the inherent noise providing random

fluctuations on the involved chemical players; the usual (ODE) models associated to CRNs may be

thought of as a linear approximation of the average dynamics coming from the CME [16]. These

ODE models can be fruitfully exploited in spite of the more complete CMEs whenever the chemical

players copy number is very high, because of their superior computational manageability. In this

work it is shown by realistic numerical simulations that the stochastic approach may be set aside

for tumour growth control purposes, at least at the beginning of an exogenous drug administration

therapy, because such therapies are supposed to start with a very large number of tumour cells.

Instead, assuming to have successfully reduced the initial tumour mass, it could be interesting to

approach the tumour eradication problem from a stochastic control perspective, dealing with a

very low number of leftover tumour cells. In fact, this contribution starts from the qualitative

analysis carried out in [15] for the ODE model associated to the CRN and further investigates

tumour growth control techniques accounting for both fixed and state-dependent feedback control

laws. The main results of this work show that constant administration therapies have several

limitations. In particular, they cannot eradicate the tumour if its size is too large when the therapy

starts. Conversely, a state-feedback control law can overcome the limitations of the constant

therapy. Indeed, it is always possible to design a control scheme able to eradicate arbitrarily large

tumours, allowing a high infusion rate only for a limited time period.
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I. INTRODUCTION

The channel gains between user equipaments (UEs) and
base stations (BSs) have a fundamental importance when
optimizing mobile networks efficiency. In general, these pa-
rameters can be evaluated by means of site specific ray tracing
solvers that simulate the radio waves propagation. These
strategies (or any other relying on physics-based models)
have the limitation of depending on how accurate the envi-
ronment is described and reconstructed into the propagation
solvers/models. However, even if the buildings geometry and
electromagnetic properties of the construction materials are
known, parameters such as motion of objects (people, cars,
etc) make these quantities stochastic in practice. In real life
situations the electromagnetic waves propagated by the anten-
nas will suffer not only from shadowing, but also combined
effects of reflection and diffraction. Consequently, the channel
gain between a UE/BS pair is inherently a random quantity.

In this paper, we extend the work presented in [1] to the case
where the channel gains are random variables. We propose
a joint optimization algorithm that minimizes the BSs trans-
mission powers in OFDMA heterogeneous networks, while
respecting chance-constrained individual users quality of ser-
vice (QoS) requirements. Unlike many works in the literature,
our optimization problem does not rely on iterative/sequential
procedures and does not require a known feasible initial
solution, which in general leads to local optimal.

II. PROBLEM FORMULATION

The Mixed-Integer Geometric Programming (MIGP) (2)
was introduce in [1]. We demonstrated that the MIGP is an
upper-bound solution to a non-convex integer optimization
problem, whose goal is to minimize transmission powers while
respecting individual users’ throughput constraints (measured
in bits/s). Bj represents the bandwidth of BS j, the binary
variable zij = 1 if a user i is connected to BS j and zij = 0
otherwise, xij = euij represents the amount of bandwidth of
BS j allocated to user i, Pj and P̂j are the transmission powers
of one resource block of BS j and its respective maximum
physical limit, and Sij(P ) is the SINR of user i connected to
BS j, defined as

Sij(P )
.
=

Pjgij
η2 +

∑
k ̸=j Pkgik

. (1)

min
z̄ij ,uij ,qj

N∑
j=1

eqj (MIGP)

s.t.:
euij ≤ 1, i ∈ [n], j ∈ [N ] (2a)
z̄ij ∈ {0, 1}, i ∈ [n], j ∈ [N ], (2b)

eqj ≤ P̂j , j ∈ [N ], (2c)
N∑
j=1

z̄ij = N − 1, i ∈ [n], (2d)

n∑
i=1

euij ≤ 1, j ∈ [N ], (2e)

f̂ℓ(qj , uij) ≤ Aℓ
ij +Mz̄ij , (2f)

i ∈ [n], j ∈ [N ], ℓ ∈ [m],

with z̄ij = 1− zij , M being a sufficiently large constant

f̂ℓ(qj , uij)
.
= log

 η2

gij
e
−qj−

uij
bℓ +

∑
k ̸=j

gik
gij

e
qk−qj−

uij
bℓ

 ,

Aℓ
ij

.
=

log
(

Bjaℓ

ri

)
bℓ

.

η2 is the noise power, gij is the channel gain between user i
and BS j. For an OFDMA heterogeneous network composed
of N BS and n users, the aforementioned optimization prob-
lem ensures that each user is connected to just one BS, a BS
cannot provide more resources than available, and each user
has an individual minimum throughput level ri to be respected.

A. Stochastic MIGP

In real-world environments, the channel gains are random
variables due to the combined effects of shadowing, multipath,
diffraction, etc. In particular these quantities respect a log-
normal distribution, i.e. the dB gains, defined as

g
(dB)
ij

.
= 10 log10 gij , i ∈ [n], j ∈ [N ] (3)

obey a Gaussian distribution, i.e. g
(dB)
ij ∼ N (µ̃ij , σ̃

2
ij). We

write this as gij ∼ LN (µij , σ
2
ij). Furthermore, we can define

the normalized gains as

ρij
.
=

10 log10 gij − µ̃ij

σ̃ij
∼ N (0, 1), i ∈ [n], j ∈ [N ]. (4)



From (4) and with c = log 10
10 , we have

gij = ec(µ̃ij+ρij σ̃ij), i ∈ [n], j ∈ [N ]. (5)

Since the channel gains are random variables and the users’
throughput levels are highly dependent on them, constraint (2f)
becomes stochastic, and must be respected with a probability
Pi given by 1−αi, leading to the following chance-constrained
optimization problem

min
z̄ij ,uij ,qj

N∑
j=1

eqj (CC-MIGP)

s.t.: (2a) − (2e) (6a)

Pi

(
f̂ℓ(qj , uij) ≤ Aℓ

ij +Mz̄ij

)
≥ 1− αi

ℓ ∈ [m], i ∈ [n], j ∈ [N ]. (6b)

Chance constrained optimization problems might be difficult to
handle. Then we present a robust formulation based solution.

III. ROBUST MIGP

Proposition 1 (Box uncertainty): Let ρij , i ∈ [n], j ∈ [N ]
be Gaussian random variables with zero mean and unitary
standard deviation, as in (4). For each user, compute the
quantities [ρ

ij
, ρij ] such that

P(ρ
ij
≤ ρij ≤ ρij) =

erf
[
ρij√
2

]
− erf

[ρ
ij√
2

]
2

= φj , j ∈ [N ],

∏N
j=1 φj = 1− αi.

(7)
Then a robust optimization problem considering the uncer-
tainty box can be derived such that its optimal solution is
feasible to the CC-MIGP.

Theorem 1: For uncertainty boxes given by Proposition 1,
the optimal solution u⋆

ij , x
⋆
ij , P

⋆
j to

min
z̄ij ,uij ,qj

N∑
j=1

eqj (Robust-MIGP)

s.t.: (2a) − (2e) (8a)

log(η2eβijℓ +
∑
k ̸=j

eζikℓ) ≤ Aℓ
ij +Mz̄ij ,

∀ρij ∈ [ρ
ij
, ρij ] and ∀ρik ∈ [ρ

ik
, ρik]

ℓ ∈ [m], i ∈ [n], j ∈ [N ], (8b)

with

βijℓ = −c(µ̃ij + ρ
ij
σ̃ij)− qj −

uij

bℓ
,

ζikℓ = c(µ̃ik + ρikσ̃ik − µ̃ij − ρ
ij
σ̃ij) + qk − qj −

uij

bℓ
,

is always feasible to the chance constrained optimization
problem in (6), i.e.

Robust MIGP(u⋆
ij , x

⋆
ij , P

⋆
j ) =⇒ Stochastic MIGP.

IV. EXAMPLE

We estimate the channel gains from a neighbourhood in
a large European city by reconstructing it (considering the
urban environment characteristics previously mentioned) into
a 3D ray tracing propagation software. Figure 1.(a) shows the
channel gains expected values µ̃ij and Figures 1.(b) and 1.(c)
expose how the randomness in these quantities can lead to a
different quality of signal and coverage.

(a) (b)

(c)

160 140 120 100 80
Channel gains (dB)

Fig. 1. Channel gains for σ = 3 and (a) µ̃ij , (b) µ̃ij −2σ, and (c) µ̃ij +2σ.

We illustrate the efficacy of our approach by applying it
on a simulated heterogeneous wireless network composed of
N = 5 BSs and n = 130 users. Our goal is to assign 120 users
distributed over an area of 800m× 800m to a corresponding
BS, respecting each throughput requirement and minimizing
the total BSs transmission powers. The optimal values as a
function of (a) standard deviation and (b) constraint probability
are show in Figure 2.
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Fig. 2. Optimal value.
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Reducing Cognitive Load through a Data-Driven Shared Control Approach
for Teleoperating Robot Swarms

T. Lisini Baldi1,2, E. Turco2, C. Castellani2, V. Bo2, C. Pacchierotti3, and D. Prattichizzo1,2

Abstract— Multi-robot systems have gained increasing interest
across various fields such as medicine, environmental monitoring,
and more. Despite the evident advantages, the coordination of
the swarm arises significant challenges for human operators,
particularly concerning the cognitive burden needed for efficiently
controlling the robots. In this study, we present a novel approach
for enabling a human operator to effectively control the mo-
tion of multiple robots. Leveraging a shared control data-driven
approach, we enable a single user to control the 9 degrees of
freedom related to the pose and shape of a swarm. Subjective
measures of cognitive load were assessed using a post-experiment
questionnaire, comparing different levels of autonomy of the
system. Results show substantial reductions in operator cognitive
load when compared to conventional teleoperation techniques,
accompanied by enhancements in task performance, including
reduced completion times and fewer instances of contact with
obstacles. This research underscores the efficacy of our approach
in enhancing human-robot interaction and improving operational
efficiency in multi-robot systems.

I. INTRODUCTION

Multi-robot systems are emerging as an important area of
research due to their potential to impact various fields, including
search and rescue operations, environmental monitoring, medi-
cal robotics, and industrial automation.

While the advantages of multi-robot systems are evident, the
complexity of coordinating multiple independent agents poses
challenges for human operators. Controlling the motion of nu-
merous robots simultaneously in an intuitive and effective man-
ner requires sophisticated interfaces and algorithms. Ensuring
seamless interaction between humans and multi-robot systems is
crucial for maximizing their potential benefits while minimizing
operational complexities, safety risks, human-robot trust, and
the cognitive load imposed on users during control. [1].

Research has shown that enhancing robot autonomy de-
creases users’ cognitive load [2], as cognitive burden correlates
with the number of conceptual elements users must simultane-
ously manage to accomplish a specific task [3].

This work presents a data-driven shared-control method aim-
ing to allocate the controlled DoFs of a multi-robot system
between a human operator and an autonomous controller,
seeking the best compromise between control effectiveness and
cognitive load reduction. Utilizing statistical analysis on human
demonstration data, shared control strategies are designed and
tested in a human-subjects experiment where users navigate a
simulated swarm in a narrow, tortuous environment.

3Università degli Studi di Siena, Dip. di Ingegneria dell’Informazione e
Scienze Matematiche, Siena, Italy. {name.surname}@unisi.it
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(a)

(b)

Fig. 1: In (a), two operators control the robotic swarm 9-DoF using
two interfaces. In (b), the navigation path is shown, with green and
red stars marking the start and end points.

II. SYSTEM OVERVIEW

The virtual environment is developed in CoppeliaSim. The
swarm is composed of 64 agents initially arranged in a spherical
formation with a depth sensor placed at its center. The target
environment features straight and curved, deformed and non-
deformed segments (Fig. 1b).

The pose and shape of the swarm can be controlled with 9-
DoF, being the pose of the swarm centroid 6-DoF (i.e., position
p and orientation o) and 3 additional DoF (deformation δ) for
modifying the shape along its three axes of symmetry.

A pair of Omega.7 (Force Dimension, CH) haptic interfaces
is employed for the user to control the available DoF.

The system offers users haptic and visual feedback. Upon
collision with the pipe wall, users receive vibrations on the
haptic interfaces’ handles along with visual cues.

III. DATA-DRIVEN SHARED CONTROL

A. Data collection from dual-user experiments

The data collection procedure involved 10 subjects (5 males
and 5 females, average age 28 ± 3.1). Participants were
randomly paired into 5 groups and instructed to collaboratively
control the swarm along the pipe-like path (Fig. 1a).

They were asked to: i) navigate through the path as quickly
as possible, ii) occupy with the robotic swarm the largest
possible cross-sectional area within the path, and iii) minimize
the number of collisions with the environment.

Each pair of users repeated the assigned task 6 times,
switching control roles after three trials to experience both
aspects of swarm control (pose and deformation). Performance



Fig. 2: Comparison of quantitative metrics for all tasks. Median and interquartile range of the six conditions are plotted. p-values, calculated
using one-way repeated measures ANOVA, are shown above the bar charts.

in completing the task was evaluated using three metrics: (i)
time to complete the path (tp), (ii) percentage of the pipe cross-
sectional area occupied by the swarm (Ac), and (iii) number
of collisions (nc). Cognitive load was assessed via NASA Task
Load Index (NASA-TLX) questionnaire. Overall, 30 trials were
conducted, capturing the users control inputs and the depth data
from the sensor.

B. Data analysis for variance estimation
The goal of this analysis is to determine which DoF were

most controlled during the trials. Initially, we classified data
into different subsections based on point cloud similarities.

Signals were then normalized and time-aligned using Dy-
namic Time Warping algorithm. We evaluated inter-user vari-
ability among commanded positions, orientations, and defor-
mations to identify trends in operator performance. A Pareto
analysis was used to assess variance in dataset features, showing
that deformation has the highest inter-user variability across all
subsections, while position has the least.

C. Shared-control algorithms for multi-robot control
Based on this analysis, four shared control techniques were

proposed, allocating DoF between a single user and an au-
tonomous controller in different ways:
Single-Deformation (S-D): one user controls the swarm defor-
mation (3-DoF, 65% of the total variance).
Single-Deformation-Orientation (S-DO): one user controls the
deformation and orientation (6-DoF, 90% of the variance).
Single-Position (S-P): one user controls the swarm position (3-
DoF, 10% of the total variance).
Single-Position-Orientation (S-PO): one user controls the
swarm pose (6-DoF, 35% of the total variance).
For each strategy, the autonomous controller manages the
remaining DoF using point cloud data as reference.

In addition, we consider two standard teleoperation condi-
tions, where the human operator retains complete control i.e.,
Single-Position-Orientation-Deformation (S-POD): one user
controls both the swarm pose and deformation (9-DoF).
Dual-Position-Orientation-Deformation (D-POD): one user
controls the swarm pose (6-DoF), another user controls the
swarm deformation (3-DoF). This modality was used in Sec. III-
A for data collection.

IV. EXPERIMENTAL EVALUATION

The experimental evaluation included the same 10 subjects
from the initial data collection phase. Each participant per-
formed the task three times per control condition (S-D, S-DO,

S-P S-PO S-D S-DO S-POD D-PO D-D

Overall Weighted
Workload Score 41.58 52.83 38.2 35.6 72.07 70.25 58.8

TABLE I: NASA-TLX workload. D-POD modality was split into D-
PO and D-D as users provided feedback for both pose and deformation.

S-P, S-PO, S-POD), totaling 15 trials. After each task, partici-
pants completed a NASA-TLX questionnaire, and quantitative
metrics were recorded.

Fig. 2 shows the results for the objective metrics. All four
shared control techniques statistically outperform compared to
single- (S-POD) and dual-user (D-POD) controls.

S-D and S-DO demonstrate high performance in maximizing
the swarm’s occupied area while notably reducing the task
completion time, signifying their operational efficiency.

The S-P control strategy demonstrates good performance
metrics in occupied areas and enhances user precision, resulting
in significantly fewer collisions and shorter task completion
times compared to standard S-POD and D-POD strategies. Con-
versely, S-PO yields lower performance but still outperforms
S-POD and D-POD in completion time.

The NASA-TLX results align with the objective analysis.
The subjective analysis indicates that our shared-control strate-
gies significantly reduce cognitive load, resulting in decreased
mental demand, effort, and frustration for users. Table I displays
the total workload, indicating that deformation control strategies
exhibited the lowest overall workloads, suggesting a better user
experience.

V. CONCLUSION

In this work, we designed, implemented, and tested data-
driven shared control strategies to reduce human cognitive bur-
den during teleoperation of a robot swarm, while enhancing task
performance. By analyzing user-controlled DoF, four shared
control policies were designed with varying autonomy levels.
Evaluation through a user study confirmed significant reductions
in cognitive load and improved task performance when the DoFs
to be controlled are shared between the user and the autonomous
controller.
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Hybrid Brain Computer Interface for Robot Control
D. Sanalitro1, M. Bucolo1 Senior Member, IEEE

I. INTRODUCTION

Brain-Computer Interface (BCI) systems have gained significant
attention as a means of establishing direct communication between
the human brain and external devices. Such direct communication
provides novel ways of interacting with both healthy individuals,
and more importantly, patients with disabilities resulting from spinal
cord injuries, Amyotrophic Lateral Sclerosis (ALS), stroke, or other
neurological conditions. Electroencephalographic (EEG) recordings
of brain waves allow for this kind of connection to be established. In
the robotics field, BCI applications have shown promise for intuitive
and efficient control [1]. In this context, this paper presents a hybrid
BCI approach for controlling a robotic system, combining Motor
Imagery (MI) and Error-Related Negativity (ERN) paradigms. The
proposed framework intends to use MI to empower users in actively
controlling the robot and ERN for human visual feedback to empower
users to provide feedback on the robot’s state changes. In MI-
based BCI systems, users imagine performing a specific movement
without actual execution [2]. In particular, when subjects imagine
left or right hand, arm, or foot movements, a lateralization can be
seen in the data, particularly when the frequency EEG band [7-
30 Hz] is considered [3]. By contrast, ERN is a type of error-
related potential (ERP) present in the EEG signals when the user is
aware of an erroneous behavior. They are characterized by an early
negative voltage deflection over fronto-central regions, referred to as
error-related negativity (NE), followed by a positive deflection over
parietal regions, referred to as error-positivity (PE). Such peaks occur
between 50 and 100 [ms] after the commission of a speeded motor
response that the subject immediately realizes to be an error [4].
By combining these two distinct paradigms, i.e. MI and ERN, for
active control and feedback retrieval, the BCI framework presented
here becomes hybrid in nature. Separate and offline demonstrations,
intended as a calibration stage, of the proposed BCI approach’s
feasibility have been made through simulations and experimental
evaluations involving human participants and an Unmanned Aerial
Vehicle (UAV). Such a calibration phase results essential as the initial
step towards the implementation of active and closed-loop control for
BCI systems.

II. SYSTEM ARCHITECTURE AND METHODOLOGY

This section proposes the overall intended control framework. In
particular, in Fig. 1 we illustrate the active control branch and the
ERN-based visual feedback. Both include an acquisition phase, a
preprocessing phase, a feature extraction and a final classification
which will be discussed in the following. To be noted, at the present
moment, the proposed algorithms operate offline and can be seen as
the first step of the BCI system, the calibration one.

A. Experimental Setup, Participants and Protocol

1) EEG Recording: The EEG signals were recorded in both cases
by using a Biosemi ActiveTwo 64-channel montage based on the
worldwide 10-10 system at 512 Hz sampling rates.

1Department of Electrical Electronic and Computer Science Engi-
neering, University of Catania, CT, Italy. dario.sanalitro@unict.it
maide.bucolo@unict.it.
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Fig. 1: System architectures overview: 1) Active Control: from the signals
acquisition to the robot control -: from the EEG recording to the ERN-
Based Feedback

Fig. 2: Subject staring at the gazebo-based simulation showing a UAV
performing forward and backward movements

2) Active Control: The study was conducted on 52 subjects and
the data was taken from [5]. Before each trial began, the subject was
instructed to wait two seconds for the monitor to display a blank
screen with a fixation cross. Then, for three seconds, one of the two
instructions, either imagining a left or right movement, was displayed.
Subjects were asked to visualize moving their hand in response to
the displayed instruction within this time interval.

3) ERN-Based Feedback: The user is asked to stare intently at a
screen. At the beginning of each experiment, a robot takes off. Then,
the trials start and a trajectory is designed to move the robot towards
predefined waypoints, i.e xd1 and xd2 , multiples times resulting in
a forward and backward behavior (see Fig. 2). Sometimes a wrong
waypoint (xw) is provided to elicit the ERN in the EEG signals.
28 waypoints were provided for each trial, 42% of them were not
correct. Only a single user is participating in this experimental phase,
with all experiments conducted in our lab. EEG data was recorded
using ROS-Neuro [6] a framework designed for the integration of
BCI technologies within robotic systems.

B. Control System Architecture

1) Active Control: In this step, MI control signals are decoded
to extract the intended motion commands. EEGs capture the user’s
brain signals, which we then process and analyze to identify specific
patterns associated with left or right motion intentions. Specifically,
the process involves acquiring data, applying band pass filtering
within the frequency range of [7-30] Hz to the EEG signals, extracting
features such as Energy, Absolute Power, and Instantaneous Spectral
Entropy, and utilizing a Convolutional Neural Network (CNN) to

mailto:dario.sanalitro@unict.it
mailto:maide.bucolo@unict.it
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Fig. 3: Active Control: Accuracy comparison between the results of the
proposed CNN and EEGNet during the test phase for the 52 subjects
involved in the study.

classify and interpret the MI patterns. The outcome of this stage is
a user model through which control inputs can be generated for the
UAV, enabling the robot to online execute the desired movements.

2) ERN-Based Feedback: In this step, the brain signals are sub-
jected to a filtering and an Artifact Subspace Reconstruction (ASR)
employed to eliminate transient and high-amplitude artifacts that
contaminate the EEG data. Then, Independent Component Analysis
(ICA), a signal processing methodology useful to separate indepen-
dent sources linearly mixed in several sensors, has been applied to
identify independent components showing the ERN. A Linear Dis-
criminant Analysis algorithm has been used to classify ERNs. Four
statistical characteristics, i.e., mean, standard deviation, skewness and
kurtosis have been used to train the classifier. In this case, the robot
control is made possible via a state-of-the-art geometric controller
implemented through telekyb31 , a free and open source software
collection for UAVs. The UAV control inputs are computed through
a geometric controller [7].

III. RESULTS

1) Active Control: Our preliminary results, which pertain to the
the calibration phase, are here described. In particular, we show
two distinct learned models: i) a within subject model trained on
each individual subject and ii) a cross-subject model trained on the
entire set of 52 subjects. In particular, the latter highlights the CNN’s
capability to discriminate between classes despite the presentation of
MI data, extremely subjective, from various individuals. TensorFlow,
an open-source, end-to-end machine learning framework, and Python
have been used for this offline study. 80% of the 40 recorded trials,
for each subject, was given for the training phase and 20% was
given for the test phase. The accuracy for the classification of three
control inputs, i.e. left, right movement and resting state is then
computed. Fig. 3 shows the results of our network for the withing
subject models. In particular, we show the accuracy for each subject
by employing EEGNet [8], a widely used CNN in the literature for
MI classification, and the proposed CNN. As a result, just two of the
52 subjects (S32 and S42) demonstrated classification performances
below 100%, specifically around 95%. Thus, the proposed CNN
outperformed EEGNet for all the involved subjects. Moreover, we
trained our model to generalize well across data from different
individuals, rather than being tailored to a single subject. While not
shown here, the results demonstrate that, even in this scenario, our
network is capable of accurately classifying large datasets with an
accuracy level exceeding 95%.

2) ERN-Based Feedback: Our initial findings are detailed here and
are related to the offline stage, i.e. the calibration. EEGLAB [9] has
been used to perform the pre-processing and the ICA decomposition.
In all the recorded experiments, an ERN was present as a consequence
of an erroneous robot behavior. The 18th independent component of
one of the performed experiments has been selected for visualization

1https://git.openrobots.org/projects/telekyb3

(a) (b)

Fig. 4: ERN-Based Feedback: 18th component time evolution for one
trial along with the scalp map. The ERN deflection and a subsequent
positive one are shown.

purposes. Fig. 4(a) shows the evolution over time of the EEG signals,
showing a negative deflection (NE) followed by a positive one
(PE) after the stimulus onset (RT ) prominent over the central and
prefrontal electrode position (see red areas of Fig. 4(b)). After the
ERN identification phase, we performed the ERN classification in
order to have a way of classifying ERNs when the online analysis is
conducted. For this purpose, a linear classifier has been trained over
10 datasets and 280 trials. The reached accuracy was 70%. After this
calibration stage, involving the offline ICA decomposition and the
ERN classification, the retrieved outcomes will be used in the online
phase for the robot control once the offline phase analyses will be
consolidated.

IV. CONCLUSIONS

This work presents a Hybrid BCI approach for controlling a robotic
system, combining Motor Imagery (MI) and Error-Related Negativity
(ERN) paradigms. We show the first step of the design of such
BCI systems, i.e. the calibration phase. The goal of future research
will be to incorporate such analyses in an online closed-loop system
that will handle both MI and ERN, providing humans with brain
actuated control frameworks able to both command external devices
and provide feedback.
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Cobots Understanding Skills Programmed by Demonstration

Isacco Zappa1, Andrea Maria Zanchettin1 and Paolo Rocco1

Abstract— Traditional robot programming requires skilled
operators, contrasting with small and medium-sized enterprises
lacking robotics expertise. Programming by Demonstration
offers a viable solution, allowing users to program a robot
in a no-coding fashion. However, while the user demonstrates
what a skill is about, the robot depicts it only as a sequence
of movements. Therefore, the knowledge gathered from the
demonstration can hardly be transferred to a different task.
This abstract presents the outcomes of enriching Programming
by Demonstration to encode the meaning of the skill being
demonstrated. We enable the robot to understand the skill
semantics in terms of preconditions and effects from a single
demonstration. A symbolic planner can then use the taught
skills as modular blocks to autonomously compute the sequence
of actions required to solve a task. Finally, given the relevance
of multi-robot systems on factory grounds, the abstract outlines
the guidelines for extending the proposed teaching methodology
to multi-agent systems.

I. BACKGROUND

Despite the effort made by manufacturers in the develop-
ment of intuitive programming interfaces, an expert opera-
tor is still required to program a collaborative robot. The
problem becomes paramount for small and medium-sized
enterprises, which usually lack such expertise in robotics.
Programming by Demonstration [1] provides the operator
with a more accessible programming method that does not
involve coding. The underlying concept is that the robot
can learn how to execute a task from a demonstration. The
demonstration spans from pure observations to kinesthetic
demonstrations. The latter consists of the operator physically
moving the robot along the execution of the skill. A key
enabling technology is cobot’s hand-guiding, which was
devised by manufacturers to save movement waypoints and
record trajectories easily. However, during the demonstration,
the operator provides the robot with information about how
to execute an action and the meaning of the action itself.
Nevertheless, the robot still depicts the demonstration as a
series of movements. Capturing the meaning of a skill from a
demonstration can give the robot a certain level of autonomy,
thus aiding the operator in deploying the cobot for a task.

II. SEMANTIC PROGRAMMING BY DEMONSTRATION

Semantics is the study of the meaning we give to the
entities around us, their properties and relations, and how we
structure this knowledge [2]. Semantics applied to robotics
enable the robot to build abstractions from the raw data

1The authors are with Politecnico di Milano, Dipartimento di Elettronica,
Informazione e Bioingegneria, Piazza L. Da Vinci 32, 20133, Milano,
Italy. email: {isacco.zappa, andreamaria.zanchettin,
paolo.rocco}@polimi.it

Fig. 1: Example of a semantic representation of the state of
the environment built from sensor data.

Fig. 2: Semantic representation of the state of the environ-
ment before and after the demonstration.

recorded by its sensor to represent the state of the envi-
ronment as a list of first-order logic predicates. Providing
the robot with the capability to build a semantic description
of the scene enhances the interpretability of how the robot
perceives the environment, resulting in more intuitive and
meaningful interactions with the operator. An example of a
state description with predicates can be seen in Figure 1.
Recent work proposes to exploit this representation to ex-
trapolate the meaning of the demonstrated skill in terms of
its preconditions and effects [3]. The user starts recording a
skill and defines the robot’s movements by saving waypoints
in the operational space. Upon the completion of the demon-
stration, the method compares the symbolic state before
and after the recording to determine which predicates hold,
are activated or deactivated. The method then autonomously
computes the preconditions and effects of the demonstrated
skill from these sets and formalizes the semantic skill model
in Planning Domain Definition Language (PDDL) [4]. An
example can be seen in Figure 2, with the resultant encoding
of the skill in PDDL shown in Listing 1. However, the
movement waypoints must be transformed into the most
suitable reference frame to ensure skill adaptability across
different environments. For instance, the waypoints of a pick
skill should be described in the object reference frame to
ensure a correct execution regardless of the object’s initial
position. The relevant reference frame for a skill is chosen
between the entities being part of the two sets of predicates
activated or deactivated by the skill. The choice is driven



Listing 1: PDDL encoding of the demonstrated skill.
( : a c t i o n s k i l l 0

:parameters (
? c1 ? c2 ? c3 − cube ? g − g r i p p e r
)
: p r e c o n d i t i o n ( and
( i s h e l d b y ? c1 ? g ) ( i s c l o s e t o ? c2 ? c3 )
)
: e f f e c t ( and
( i s g r i p p e r o p e n ? g ) ( i s o n t o p ? c1 ? c2 )
( i s o n t o p ? c1 ? c3 ) ( not ( i s h e l d b y ? c1 ? g ) )
)

)

by a decision tree that inputs the sets and outputs the most
suitable object reference frame to describe the waypoints.
Semantic Programming by Demonstration allows the oper-
ator to teach the basic modular skills required for the task
in a no-coding fashion. Then, after the goal is specified, a
symbolic planner can use the PDDL skill models to compute
and execute the sequence of skills that allows the robot to
accomplish the task.

III. TEACHING SKILLS IN A MULTI-AGENT SCENARIO

A single robotic manipulator may not be appropriate
for some tasks due to its limited workspace and intrinsic
limitations. Indeed, it is expected to find multi-robot systems
in factories when a production speed-up or robots with
different capabilities are needed. Moreover, some tasks, such
as screwing the cap of a bottle or lifting a tray from two
handles, cannot be tackled by a single manipulator. Dual-arm
robotic manipulators brought significant innovation to the
field of industrial robotics. By emulating the human structure
and coordinated movements, this type of robot shows a
higher level of dexterity and adaptability to a broader range
of skills. Dual-arm robots have gathered the interest of a
niche in the industry, where high productivity in complex
tasks is required, with precision and speed [5].
We focus on enabling a Multi-Agent (MA) system, such as
a dual-arm robot, to learn the semantics of skills taught by
demonstration. The challenges to be tackled are manifold.
The basic formulation of PDDL is not appropriate for MA
planning. Indeed, it is possible to define the entities in the
scene to account for both the robot arms. However, the
planner would still generate a sequential plan without actions
scheduled in parallel, thus not exploiting the advantages of
a dual-arm robot coordinated motion and task execution
speed-up. Moreover, the robots must be provided with an
understanding of space constraints and skills synergies to
avoid unfeasible plans to be computed by the planner, such
as in the examples depicted in Figure 3.
We address these issues by replacing the formalism em-
ployed to describe the skill semantics with MA-PDDL [6]
and integrate a planning pipeline that can generate plans
comprising of actions scheduled in parallel [7]. Then, we
manually divide the workspace into areas and define move-
ment skills that regulate the robots’ access to them. The rules

Fig. 3: Comparison between the baseline and the methodol-
ogy extended to multi-agent system: a) scenario with shared
resources and b) requirement of action synergies (i.e. close
a bottle).

are implemented by including the availability of the target
area in the skill preconditions. This way, the planner always
schedules one robot at a time to act on shared portions of
the workspace. Finally, we detect and encode concurrency
constraints in the skills preconditions by checking during
the demonstration which robots are concurrently modifying
the environment. Therefore, the planner is constrained to
schedule the synergetic skills in parallel.
We tested our framework on a dual-arm YuMi robot from
ABB, asking ten candidates with limited robotic expertise
to teach the skills required for a Tower of Hanoi task
variant involving shared areas and coordinated motions.
Results show that first-time users can effectively teach by
demonstration the skills required to solve the task and that
the parallel planning pipeline ensures an execution speed-
up while accounting for the space constraints. The multi-
agent extension guidelines, with their implementation on
both hand-guiding teaching on a dual-arm robot and Virtual
Reality teaching, and the experimental results are further
outlined in a video available online1.
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Human Augmentation:
Controlling Supernumerary Robotic Limbs via Body Redundancy

Nicole D’Aurizio1, Tommaso Lisini Baldi1, and Domenico Prattichizzo1

Abstract—Supernumerary robotic limbs (SRLs) can restore lost
motor functions and enhance human sensorimotor capabilities. An
essential challenge is formulating intuitive augmentation policies
for controlling SRLs without impeding natural limb functionality.

This work introduces an innovative strategy utilizing the
redundancy of the human kinematic chain for commanding
SRLs having one degree of freedom. This concept is summarized
in the definition of the Intrinsic Kinematic Null Space (IKNS).
The newly developed procedure encompasses a real-time analysis
of body motion and a subsequent computation of the control
signal for SRLs based on the IKNS for single-arm tasks. What
sets our approach apart is its explicit emphasis on incorporating
user-specific biomechanical and physiological characteristics and
constraints. This ensures an efficient and intuitive approach to
commanding SRLs, tailored to the individual user’s needs.

I. INTRODUCTION

Supernumerary robotic limbs (SRLs) offer the possibility
to augment human capabilities in terms of perception and
manipulation abilities [1], [2], allowing individuals to perform
complex sensorimotor tasks by coordinating biological and
artificial limbs. Differently from prostheses and exoskeletons,
which are designed to empower human natural movements,
SRLs represent additional degrees of freedom (DoFs) that need
to be controlled independently from and simultaneously with
biological limbs.

The cutting-edge component to implement the idea of
augmentation is the design of wearable sensorimotor interfaces.
From a broad perspective, these interfaces are meant for
establishing a bidirectional connection between the human
sensorimotor system and the robot’s system of actuators
and sensors. Through this connection, reciprocal awareness,
trustworthiness, and mutual understanding are intended to be
achieved, enhancing the overall integration between the user
and the SRLs. For instance, by capturing signals from human
body motion or muscle activation, sensorimotor interfaces can
leverage the redundancy of the human sensorimotor system to
map commands for the robot limbs.

Our work presents a novel methodology to extract a signal
from the human kinematic redundancy for enabling the
simultaneous control of natural and artificial limbs during
task execution. By kinematic redundancy we refer to body
motions that do not affect the action of the biological hands.

II. INTRINSIC KINEMATIC NULL SPACE

Considering a task to be accomplished and the kinematic
space of the whole body, we can make a distinction between
two types of null space:

1 are with the Department of Information Engineering and Mathematics,
University of Siena, Siena, Italy, and with the Department of Humanoids and
Human Centered Mechatronics, Istituto Italiano di Tecnologia, Genova, Italy.
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Fig. 1: An impaired subject exploiting the redundancy of the arm involved in
the task to control the robotic extra-limb, while simultaneously holding the
glass.

Extrinsic Kinematic Null Space (EKNS) that refers to veloci-
ties of joints which are not involved in such a task;

Intrinsic Kinematic Null Space (IKNS) that refers to veloci-
ties of joints directly employed in the task.

Taking advantage of movements in the IKNS lets the user
operate a device using body parts already involved in the task,
without compromising the use of free limbs which instead
may be involved in further parallel tasks (see Fig. 1).

In this work, we focused our attention on exploiting motions
in the IKNS in the specific use case of controlling a SRL
while performing single-arm tasks, since we identified them
as critical for impaired people and the most paradigmatic
for presenting this innovative approach. We developed a user-
centred, data-driven, systematic procedure to identify the IKNS.
An overview of the method is shown in the block scheme
depicted in Fig. 2a, while a through description is available
in [3].

III. EXPERIMENTAL VALIDATION

Ten subjects per experiment participated in the experimental
campaign. A flow diagram of the experimental procedure is
in Fig. 2b.

Exp. 1: Is it possible to use the IKNS to command an
extra degree of freedom to execute dual tasks?
Participants were asked to seat and move their upper limb to
control the position and the radius of a virtual sphere. The goal
was to overlap two spheres: one controlled by the user, and
one considered the target. Two different conditions were tested.
While in both conditions the radius was changed by exploiting
the IKNS, in the first condition the position of the target was
fixed while in the second condition the user had also to align
with the position of the target by moving the hand. Results
revealed that using the IKNS to control an additional degree
of freedom in a dual task did not affect the performance of
the primary task.

Exp. 2: How is the user control ability affected by
practice considering the difficulty of the task?
Each user was asked to use their hand position to directly
control the position of a cursor and match a target placed in one
of the nine spatial positions around the rest position, which was
a sphere located in front of their right shoulder. Targets were



(a)

(b)

Fig. 2: In a) a flowchart reporting the phases for computing the control signal.
In b) a flow diagram of the experimental procedure.

spherical or prolate spheroids. Users were asked to control
simultaneously cursor position and orientation, exploiting the
IKNS-based control signal to adjust the latter. The experiment
was designed as a sequence of 14 blocks. Each block was made
of 3 cycles, in each of which the user was asked to match 9
targets, that is, one per spatial position, for a total of 27 targets
per block. In the first and the last blocks (B1 and B14) users
were asked to control only the cursor position to establish a
baseline for the users’ control ability. Task performance was
evaluated considering four metrics: i) reaching success rate,
computed as the percentage of reached targets in the block,
ii) holding success rate, computed as the percentage of targets
held for at least 1 s in the block, iii) holding time, computed
as the maximum time the cursor held the target matched
within 10 s, and iv) angular error, computed as the difference
between cursor and target orientation when the cursor position
was within the spatial tolerance. An information theory-based
approach based on [4] was adopted to devise a model of the
participants’ motor behaviour.

On average both success rates increased with block progres-
sion. Mean reaching success rate went from 50 ± 35% in B2
to 66 ± 32% in B13, while mean holding success rate started
from 27 ± 31% in B2, and reached 37 ± 33% in B13. Mean
holding time raised from 0.71 ± 0.50 s in B2 to 0.99 ± 0.44 s
in B13. Mean angular error went from 10.28 ± 3.63 deg in
B2 to 7.47 ± 3.43 deg in B13. No significant differences were
found between B1 and B14 as regards reaching and holding
success rates, while a statistically significant increase of 0.86 s
in holding time was observed. These outcomes indicate not
only that practice positively influenced users’ control ability,
but also a large inter-individual variability in task performance.
As last measure of performance obtained from the Fitts’ Law,
we considered the throughput, which is defined as the ratio
between the index of difficulty of the task and the movement
time. The mean throughput across participants went from 0.81
± 0.07 bit/s in B2 to 0.94 ± 0.11 bit/s in B13, confirming
that participants improved their speed-accuracy trade-off with
practice.

Exp. 3: Is the IKNS-based control easy to learn for
controlling a wearable extra-finger to accomplish common
activities of daily living requiring simultaneous tasks?
Subjects were asked to perform a repetitive pick-and-place

task. They wore a robotic extra-finger on the right forearm and
controlled the position of the opening/closing mechanism with
the same arm using the IKNS to move a Rubik’s Cube. The
number of successfully reached target positions was used to
estimate the learning curve describing the average improvement
in performance. 8 users over 10 reached a speed of 30 pick-
and-place motions in 3 minutes. On average, after 7 trials
participants reached the plateau, meaning that asking them to
perform further tasks would have led to limited improvement
since their learning capacity was reduced. The slope of the
learning curve demonstrates that with few trials users were able
to take advantage of the IKNS-based control for accomplishing
dual tasks with a wearable SRL.

Exp. 4: How does user performance in accomplishing
common activities of daily living that involve simultaneous
tasks differ when using the IKNS-based control compared to
an EKNS-based control?
Participants were instructed to use a grounded supernumerary
robotic arm to pour a glass of water. They were given two
tasks to complete simultaneously: holding the glass under the
bottle, and precisely controlling the robot to pour exactly 30 g
of water. Subjects were asked to repeat the task under two
experimental conditions, that is controlling the velocity of the
joint using once the IKNS-based control signal extracted from
the same arm holding the glass, and once using the EKNS-
based control signal extracted from the dorsiflexion of their
right foot. The deviation from the desired water quantity and
the completion time were used as evaluation metrics. The mean
difference of 1.51 g between using the IKNS-based control
signal as opposed to using the EKNS-based control signal
was not statistically significant, while there was a statistically
significant time reduction of 2.91 s when commanding the
robot with the EKNS approach.

IV. CONCLUSION

We developed and novel approach to control extra DoFs
exploiting the human body kinematic redundancy and demon-
strated the feasibility in controlling SRLs. Such an approach
can be applied to more sophisticated assistive or augmentative
robotic devices (as extra limbs/arm wearable or not) in
everyday life situations, for both healthy and impaired people.
The proposed method may be used, for instance, by impaired
(including several impaired) patients to compensate for their
disability using the same limb (the healthy one) both to
accomplish a task and for controlling a robot in a cooperative
way. In future studies we will evaluate the cognitive load
needed for using such approach that might me too high for a
frail person.
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Enabling Physical Interaction in the Metaverse through the Avatarm

B. Brogi1, G. Cortigiani1, N. D’Aurizio1,2, A. Villani1, D. Prattichizzo1,2, T. Lisini Baldi1,2

Abstract— The Metaverse is an immersive shared space that
remote users can access through virtual and augmented reality
interfaces, enabling their avatars to interact with each other and
the surrounding. While digital objects can be manipulated, physical
objects cannot be touched, grasped, or moved within the Metaverse
due to the absence of appropriate interfaces. This work proposes
a solution to overcome this limitation by introducing the “Physical
Metaverse”, a shared environment populated by “Avatarms”:
avatars equipped with robotic arms capable of performing physical
manipulative tasks. These robotic arms remain hidden from the
user’s view through diminished reality techniques, enabling users
to tangibly perceive the manipulated objects and gain a heightened
sense of situational awareness.

I. INTRODUCTION

Human-robot collaboration has become very popular with the
advent of domestic and assistive robotics, and it is interesting
to note that digital environments gives the possibility to realize
interfaces with the aim of helping people. Among various
ways to utilize auxiliary robotics for wellness of persons, the
metaverse offers captivating opportunities. The virtual spaces of
the metaverse consist of computer-designed environments and
digital twins of real objects and are populated by avatars, the
graphical counterparts of the users. However, the key feature
that is currently missing is the physical interaction with real
remote objects. To overcome this limitation, this work presents
the concept of a Physical Metaverse which will be enabled by
a new interface enhancing the virtual avatar with manipulation
capabilities that we will call the Avatarm.

II. AVATARM AND PHYSICAL METAVERSE

The Avatarm consists of a digital avatar augmented by a
robotic arm that performs physical manipulation tasks while
remaining entirely hidden in the metaverse. In this way, the
users have the illusion that the avatar is directly manipulating
objects without the mediation of a robot (Fig. 1). Moreover, the
scenario represented in Fig. 2 will be instrumental in explaining
the framework of the Physical Metaverse. Consider two people,
Alice and Brad, having a conversation in the metaverse, sharing
an augmented version of Alice’s kitchen. They sit at the kitchen
table, having tea from a distance. Alice’s kitchen is equipped with
a camera and a remotely controlled robotic arm, allowing Brad
to interact with objects on the table. Both Alice and Brad view
this shared environment through their head-mounted displays
(HMDs). Alice’s view is from a camera on her HMD, while
Brad’s view is from an additional camera in front of the table.

When Brad wants to pour tea or pass a biscuit, he uses his vir-
tual hand to grasp the digital twin of the object. Simultaneously,
the robotic arm manipulates the real object. Brad’s virtual hand
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the project “HARIA - Human-Robot Sensorimotor Augmentation”.

1 are with the Department of Information Engineering and Mathematics,
University of Siena, Italy. {surname}@diism.unisi.it

2 are with the department of Humanoids and Human Centered Mechatronics,
Istituto Italiano di Tecnologia, Genova, Italy.

Fig. 1: Avatar representative scenario. On the left, the scene captured
by the real camera; on the right, the scene as seen by the Avatar user.

is controlled by his movements, and the robotic arm provides
real-time feedback on its position and force through a wearable
haptic interface. Furthermore, Brad receives haptic feedback
when the robot approaches kinematic singularities. This feature
is essential for giving Brad awareness of the space the robot
can reach, as he cannot see it.

In the following sections, we will describe the main compo-
nents of the Avatarm working framework: i) robot concealment,
ii) robot motion control, iii) Avatarm hand with haptic feedback,
and iv) situational awareness. The interestd reader is referred
to [1] for technical details of the overall building blocks.

Robot Concealment

Differently from existing vision-based solutions, we propose
a technique to determine the region to be removed using the
robot’s CAD model, which moves according to its kinematics.
In the proposed framework, the real-time cancellation of the
robotic arm is achieved through an ad-hoc virtual environment.

A digital camera in the virtual environment records the CAD
model while it moves in front of a black panel. A region-
based segmentation and binarization algorithm processes the
frames from the virtual camera to estimate the pixels containing
portions of the robot generating a binary mask. The image
frames acquired by the real camera are projected onto a virtual
panel. This panel is overlapped by a second virtual panel,
which streams frames that are a combination of a background
image (acquired before placing the robot) and the binary mask
previously computed. Due to this panel overlapping, the robotic
arm becomes transparent in the resulting frames by replacing the
pixels within the mask with portions of the background image.
The result is finally rendered in the user’s HMD.

Robot Motion Control

To ensure realistic interaction, we implemented a closed-loop
strategy to compute the joint velocities of the robot, considering
the pose of the real object. Specifically, the pose of the center-
of-mass of the object digital twin is used as reference for the
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Fig. 2: Physical Metaverse framework. User (B) acts as the Avatar of the scene and can manipulate real objects in the remote environment of
user (A) using the robot, which remains hidden from view inside the HMD.

pose of the end-effector, computing the manipulator’s motion
online based on user inputs.

Avatarm Hand

To prevent users from seeing the virtual hand penetrate objects
during interaction, we superimposed a second virtual hand onto
the avatar’s original hand. This solution allows the user to
command the gripper to close more than the object’s size,
ensuring it applies the necessary force to grasp the object while
maintaining consistency in the virtual environment. Additionally,
the squeezing forces were mapped from force sensors on the
gripper to the user’s fingertips using the backward mapping
procedure described in [2] with a wearable haptic interface.

Situation Awareness

Since the robot is hidden from view in the Physical Metaverse,
the user controlling the Avatar is unaware of the boundaries
of the manipulator’s reachable workspace. This means the user
might try to move an object to a point the robot cannot reach,
potentially causing system malfunctions. To address this, we
informed the user of the distance to singular configurations
through a vibrotactile signal provided via a haptic interface. To
compute the manipulator’s distance from singular configurations,
we exploited the robot manipulability measure.

III. EXPERIMENTAL EVALUATION

To assess the feasibility of the Avatarm, three different
experiments were designed. The first two experiments evaluated
the capabilities of the algorithms for robot motion control and
concealment, and for force feedback, respectively. The third
experiment investigated the psychological sense of presence,
co-presence, and social presence provided by the Avatarm.

The first experiment demonstrated that the gripper’s posi-
tioning error was sufficiently small to perform daily activities
effectively, such as pouring water or offering a glass. The
average error in positioning the end-effector was less than
1.5 cm, with minimal average misalignment between the desired
and actual orientation (less than 1◦ on each axis). Regarding
the concealment method, for each trial of the experiment, we
recorded two videos simultaneously: one of the real environment
(i.e., before hiding the robot) and one of the environment with the
robot concealed. The analysis of the recorded videos revealed
that the algorithm successfully removed 95.3% ± 3% of the
manipulator on average.

The second experiment simulated an interaction with a fragile
object to assess the importance of haptic feedback. The haptic
cue drastically reduced the occurrence of failures (i.e., object falls

or breaks) and minimized the contact force impulse during pick-
and-place tasks. Out of 100 pick-and-place trials (50 with haptic
feedback and 50 without), participants achieved a statistically
higher success rate when haptic feedback was provided (62.0%±
39.4%) compared to controlling the Avatarm without haptic
feedback (34.0%± 25.0%).

Finally, the third experiment evaluated the effectiveness of
the Avatarm in enhancing the sense of presence, co-presence,
and social presence. The goal was to cooperate with a partner
to stack up to nine cups of decreasing diameter, aiming to
outperform other teams1. The experienced psychological sense
of presence, co-presence, and social presence were used as
metrics for evaluating the soundness of our framework. After
the first three trials and at the end of the experiment (i.e., once
for each role), team members were asked to complete an online
survey to gather information on their experience. When using the
Avatarm, participants took control of the task, giving them both
the responsibility and the ability to determine the experimental
outcome. This likely fostered a greater sense of cooperation,
as their actions were more interdependent with those of their
companion.

IV. CONCLUSIONS

This work introduces a novel framework for physical col-
laboration within the metaverse, built upon the Avatarm, an
advanced avatar capable of interacting with physical objects.
This framework creates a new form of extended remote physical
environment shared among multiple users, which we term
the ‘Physical Metaverse’. However, experiments have revealed
limitations in the framework. Rendering the scene in 2D
diminishes the immersive experience, and the lack of three-
dimensionality is a significant drawback. Additionally, the system
uses a static background and does not account for dynamic
changes in the environment, which is a crucial area for future
improvement. Despite these challenges, continued development
of the Avatarm holds the potential to revolutionize the XR
experience, redefining how we interact with and perceive our
surroundings in the metaverse by making it more tangible and
physical.
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Abstract— This study develops a robust optimization model
for task planning of human-robot collaborative operations. Our
primary objective is to minimize the total completion time of
the tasks while taking into account feasibility and operational
constraints. The proposed model provides robustness against
the uncertainty of human behavior, while allowing the problem
to remain deterministic and linear in nature. The level of
conservativeness can be adjusted to provide a trade-off between
optimality and robustness, such that over-conservatism is
avoided in different operational scenarios. The performance and
advantages of the model are discussed to highlight its capability
to achieve an effective task plan, manage uncertainties, and
fulfill constraints in a human-robot collaborative environment.

I. INTRODUCTION

Human-Robot Collaboration (HRC) within industrial
settings necessitates efficient planning and scheduling
between humans and robots. This is crucial because factors
such as safety concerns and human fatigue can cause
execution times to exceed the nominal forecast times in the
planning phase. By addressing these potential deviations,
HRC systems can enhance overall performance and maintain
operational reliability [1].

From this perspective, many HRC systems have developed
planning approaches to identify feasible plans within
predefined and dynamic constraints and rules. However, these
sequences are not necessarily optimized for minimizing total
completion time or other performance criteria. [2].

Most recent efforts focus on developing task planners
to create feasible sequences that meet temporal and spatial
constraints, and optimizing scheduling among human and
robot. For example, the study in [3] proposed a dynamic
optimization approach for HRC systems in collaborative
manufacturing, minimizing execution time and considering
safety criteria. They employed a timeline-based planning
approach for scheduling. The work in [4] used Behavior
Trees for adaptive task planning, and [5] introduced a
Petri-Nets-based planning engine to minimize idle time in
collaborative assembly.

This study contributes to optimal task planning in HRC
systems by developing a robust optimization approach,
addressing the challenges posed by task complexity and
unpredictable human behavior.

II. THE PROPOSED ROBUST TASK PLANNING
OPTIMIZATION APPROACH

We develop a robust optimization approach for HRC task
planning. The details of the approach are provided in this
section.

A. The Problem Definition

We consider a problem including several tasks to be
completed collaboratively by human and robot in some
sequences, such as assembling or disassembling a product
in an industrial line. The objective is to minimize the total
completion time of all operations performed by both human
and a robot. Our approach considers constraints such as task
precedence of operations, the possibility of assigning specific
tasks to only humans or robot for particular operations, and
the need to avoid overlapping assignments for tasks.

B. The Nominal Task Planning Optimization Approach

The optimization problem when all parameters are defined
and referred to as the nominal optimization problem, can be
formulated as follows:

minimize
N∑
i=1

(pHi · xH
i + pRi · xR

i )

subject to xH
i + xR

i = 1, ∀i (1)

xH
i = 1, ∀i ∈ H (2)

xR
i = 1, ∀i ∈ R (3)

tci = tsi + pHi · xH
i + pRi · xR

i , ∀i (4)

tsj ≥ tci · Sij , ∀i, j (5)

xH
i , xR

i ∈ {0, 1}, ∀i (6)

tsi ≥ 0, ∀i (7)

tci ≥ 0, ∀i (8)

where xH
i and xR

i are binary decision variables indicating if
task i is assigned to the human or the robot, N is the total
number of tasks or planning horizon, and tsi and tci represent
the start and completion times of task i. The parameters pHi
and pRi are the processing times of task i by the human and
the robot, respectively. Sik is a binary variable indicating if
task i precedes task k, and H and R are sets of tasks that can
only be performed by humans and robots, respectively. The
constraints ensure that each task is completed by either the
human or the robot (xH

i +xR
i = 1), enforce the human-only

(xH
i = 1 for i ∈ H) and robot-only (xR

i = 1 for i ∈ R)
task assignments, and define the relationship between start
and completion times (tci = tsi + pHi · xH

i + pRi · xR
i ).

The non-overlapping constraint (tsj ≥ tci ) ensures that tasks
assigned to the same resource do not overlap in time,
while the precedence constraint (tsk ≥ tci · Sik) ensures that
tasks follow the required order. Finally, the non-negativity
constraints (tsi ≥ 0 and tci ≥ 0) ensure valid start and
completion times.



C. The Robust Counterpart of the Problem

The nominal optimization problem defined in Section
(II-B) aims to minimize the task completion time without
taking into account the uncertainties of human behavior,
such as the fact that a human worker might not perform
the task exactly within the forecast time. This can provide
solutions that are not only far from optimality but can be also
infeasible in some cases because constraints, in particular the
task precedence constraints in Eq. (5), can be easily violated.
In order to tackle this, we developed a robust counterpart
to the nominal problem based on the method developed by
Bertsimas and Sim in [6].

Let pHi represent the nominal processing time for task i
when performed by a human, and let the uncertain processing
time be p̃Hi , which can vary within [pHi −∆pHi , pHi +∆pHi ].

First, to properly use the method in [6], without loss
of generality, we assume that the objective function is
not subject to uncertainty and uncertainty only affects the
constraints. To this aim, we introduce an auxiliary variable
Z and define Z ≥

∑N
i=1(p

H
i · xH

i + pRi · xR
i ) as a constraint

and we change the optimization problem to minimize Z.
In addition, in order to avoid nonlinearity in the problem,
we need to transform the nonlinear precedence constraint
tsj ≥ tci ·Sij (which with substituting tci will be in a quadratic
form) to a linear form. For this, we introduce a large constant
M (big-M method) to enforce these constraints linearly. Let
δij be a binary variable that is 1 if task i precedes task j and
0 otherwise. This allows us to write the precedence constraint
linearly as tsj ≥ tsi −M(1− δij). If δij = 1, this constraint
reduces to tsj ≥ tci . If δij = 0, the constraint is not active
because M is a sufficiently large number.

Thus, the robust counterpart of the nominal problem is
formulated as follows:

minimize Z

subject to (1)-(4), (6)-(8), and

Z ≥
N∑
i=1

(
pHi · xH

i + pRi · xR
i

)
+ max

S∪{t}
S⊆J,|S|=⌊Γ⌋

t∈J\S

∑
i∈S

∆pHi · xH
i ,

tsj ≥ tci −M(1− δij)

+ max
S∪{t}

S⊆J,|S|=⌊Γ⌋
t∈J\S

∑
i∈S

∆pHi · xH
i , ∀i, j,

where Γ is a non-negative parameter called the budget
of uncertainty, which ranges from [0 N ], indicating the
number of parameters allowed to deviate from their forecast
values. The two max terms in the constraints are protection
functions that protect the constraint from being violated due
to uncertainty.

This robust counterpart has an equivalent mixed-integer

linear programming (MILP) formulation as follows [6]:

minimize Z

subject to (1)-(4), (6)-(8), and

Z ≥
N∑
i=1

(
pHi · xH

i + pRi · xR
i

)
+ z1 · Γ +

∑
i∈J

di,

tsj ≥ tci −M(1− δij) + z2 · Γ +
∑
i∈J

gi, ∀i, j,

z1 + di ≥ ∆pHi · yi, ∀i, j ∈ J,

− yi ≤ xi ≤ yi, ∀i,
li ≤ xi ≤ ui, ∀i,
di ≥ 0, ∀i ∈ J,

yi ≥ 0, zi ≥ 0, ∀i.
where z1, z2, di, gi, and yi are supporting variables for dual
problem of the robust counterpart, li and ui are lower and
upper bounds that can be defined for each decision variable.

III. DISCUSSION AND CONCLUSION

A robust model was developed to optimize HRC task
planning by minimizing completion times while satisfying
constraints such as task precedence, the assignment of
specific tasks to human and robot, and task overlapping
avoidance. This deterministic robust approach handles
uncertainties flexibly by adjusting the budget of uncertainty
(Γ), and can balance optimality and robustness without
heavily penalizing the objective function or constraints.
The conservativeness of the solution is adjustable. For
example, when Γ = 0, the model corresponds to the
nominal optimization problem, and provides the lowest
completion time but overly optimistic results (assumes
no uncertainty). Conversely, when Γ = N , the model
fully addresses uncertainty, giving the most conservative
solution by considering the worst-case scenario for all
uncertain parameters. However, by adjusting Γ within the
range [0, N ], decision-makers can balance robustness and
conservativeness, finding a tradeoff between time saving and
constraint violation rates.

The model remains in MILP form which is manageable
with commercial optimizers, making it applicable to
industrial settings such as assembly and disassembly lines.
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1. INTRODUCTION

Consider a discrete-time SISO LTI stochastic system:

S:
xk+1 = Axk +Buk +wk,

yk = Cxk +Duk + vk,

zk = Fxk +Guk,

(1a)
(1b)
(1c)

Let WN denote a white noise stochastic process, with
A,B,C,D,F,G the system matrices with proper dimen-
sions. The noises wk ∼ WN (0nx ,Q) , vk ∼ WN (0, R),
with Q ∈ Rnx×nx ,Q ⪰ 0, and R ∈ R>0, are independent
so that wk ⊥ vk ⊥ x0. The notation 0nx ∈ Rnx denotes
the zero vector. The filtering problem for the system (1)
consists in providing a possibly optimal estimate ẑk of
zk given a set of past measurements {uτ , yτ}kτ=1 with
τ ≤ k. When the system is not completely known, a two-
steps rationale, that we denote as model-based (indirect)
filtering, is commonly employed using a Kalman filter K(Ŝ)
for S. The filtering performance of K(Ŝ) degrades rapidly
when the model Ŝ is not well representative of the system
S in (1), especially regarding the noise covariance matrices
Q and R that often are manually set.

An alternative paradigm, denoted as direct (data-driven)
filtering, has been studied in a parametric set membership
(Milanese et al., 2010; Ruiz et al., 2010) and stochastic
(Novara et al., 2012) frameworks. In this rationale, the
aim is to directly identify a filter D̂ from data. To this
end, consider noisy measurements ℓk of zk as

ℓk = zk + ek = Fxk +Guk + ek, (2)
where ek ∼ WN (0nz

,Σ) and Σ ∈ Rnz×nz ,Σ ⪰ 0
ek ⊥ (wk, vk,x0). Given a dataset of N observations
{uk, yk, ℓk}Nk=1, the direct data-driven design of filters for
system (1) is a system identification problem where the
inputs of the filter model are (uk, yk) and the output is ℓk.
Notice that in the direct framework the noise covariance
matrices are implicitly learnt from data. So, this work
focuses on a comparison between the indirect and direct
data-driven designs of full state filters for stochastic SISO
LTI systems (1), studying the effect of noise covariance
estimates on the state filtering.

2. PROBLEM STATEMENT

We start defining a set of assumptions common to both
model-based and direct data-driven filter design rationales.

Assumption 1. (System order). The order nx of (1) is
known. In filtering applications, the user has often a phys-
ical knowledge of the system states, so this assumption is
less critical than in identification problems.
Assumption 2. (Measured data). A set of N observations
D := {uτ , yτ , ℓτ}Nτ=1 has been collected from (1)-(2).
Assumption 3. (Observability). (C,A) is observable.

Under Assumptions 1-3, the problem of filter design for
system (1) can be stated as follows.
Problem 1. (Full state filter design). Consider the case F =
Inx

, G = 0, so that zk = xk and so nz = nx. Design
a causal LTI filter using measurements in D that, given
{uτ , yτ}kτ=1, τ ≤ k, gives an estimate ẑk of zk.

3. INDIRECT FILTER DESIGN

Unbiased estimates of (Â, B̂) are obtained in a least
squares sense starting from a multi-targets regression
relying on an instrumental variable ξk :=

[
ℓ⊤k−1 uk

]⊤ ∈
Rnx+1 so that

[Â, B̂] =

(
N∑

k=2

ℓk+1 ξ⊤k

)
·

(
N∑

k=2

φk ξ⊤k

)−1

. (3)

Unbiased estimates of (Ĉ, D̂) can be obtained in a least
squares sense similarly to (3) as

[Ĉ, D̂] =

(
N∑

k=2

yk ξ⊤k

)
·

(
N∑

k=2

φk ξ⊤k

)−1

. (4)

3.1 Estimation of Q and R

In this work we employ a specific one-step correlation ap-
proach known as the Autocovariance Least-Square (ALS)
method for estimating the covariance matrices.

4. DIRECT FILTER DESIGN

The identification problem can be solved resorting to a
PEM formulation

θ̂D = arg min
θD

1

N

N∑
k=1

∥∥∥ℓk − ℓ̂k|k−1(θD)
∥∥∥2
2

(5)

where ℓ̂k|k−1 is the one-step prediction from model D(θD).



Fig. 1. Filtering root mean square error of the four approaches (the lower, the better). Each plot represents the filtering
error of a single state of system (8). The vertical black line denotes the performance of the Nominal KF approach.
The numbers close the plot border denote the number of outliers.

Assume that the system (1) is completely known. In
this case, the Kalman filter recursions provide the best
linear unbiased estimator, with minimum variance of the
state prediction error. The steady-state expression of this
optimal state filter is used to choose the structure of the
data-driven filter.

The model D(θD) for the data-driven filter must be
parametrized with both exogenous and noise models:

ℓk = Gu(z;θD)uk +Gy(z;θD)yk +H(z;θD)ρk (6)
where ρk is a white noise process and Gu(z;θD), Gu(z;θD),
H(z;θD) ̸= 1nx

are nx×1 transfer matrices that represent
the parameterized models for the exogenous inputs uk, yk
and noise ρk, respectively.

The state estimates provided by the direct data-driven
approach can be computed by a simulation of the identified
direct filter D̂ as

ẑD
k = Gu(z; θ̂D)uk +Gy(z; θ̂D)yk. (7)

5. NUMERICAL RESULTS

Consider a system (1) of order nx = 3 sampled at Ts =
0.01 s and measurements (2) with

A =

[
0.610 0.084 −0.536
−0.139 0.270 0.763
0.124 0.279 −0.245

]
, B =

[−0.558
−0.028
−1.476

]
, (8)

C = [0.259 −2.018 0.199] , D = 0, R = 1,

Q = diag (0.025, 0.05, 0.1) , Σ = diag (0.067, 0.1, 0.2) ,
where diag(·) indicates a diagonal matrix. We simulate
N = 1000 data {yk, ℓk} from (8) using a white noise
input uk ∼ WN(0, 1). We compare the following four
approaches:

(1) Nominal KF: a Kalman Filter with all system
(A,B,C,D) and covariance matrices (Q, R) known.
This is the best possible linear filtering approach for
systems of type (1).

(2) Indirect KF (Q,R): a Kalman Filter employing
estimates of the system matrices (3) and (4), but with
known covariance matrices Q, R.

(3) Indirect KF: a Kalman Filter employing estimates
of the system matrices (3) and (4), and estimates of

covariance matrices. This is the typical situation in
practical scenarios.

(4) Direct filter: a direct filter of a proper order and
structure (6) is identified from the data.

We run MC = 100 Monte-Carlo simulations, varying the
realization of the noises wk, vk, ek at each run. For each
run, the designed filters are evaluated on a test dataset
(fixed for each simulation) of Ntest = 1000 data generated
with a white noise input utest

k ∼ WN(0, 1). The test dataset
is different from the identification one, both regarding the
input and the realizations of the noises affecting the test
data. Regarding the Direct filter approach, we choose a
MIMO Box-Jenkins model structure, with 2 inputs (the
input uk and the output yk of the system) and 3 outputs
(the states measurements ℓk). The orders nb, nf , nc, nd are
fixed for all the three outputs of the direct filter model.
In particular, we set nb = nf = nc = nd = nx. The
adequacy of these setting is evaluated on the test dataset
by residual correlation analysis of the one-step prediction
error ℓk − ℓ̂k|k−1(θ̂D) of the direct filter model.

Figure 1 shows a comparison of the filtering performance
of the four approaches, on the test dataset. The Direct
Filter is superior to both the Indirect KF (Q,R) and
Indirect KF approaches, as it directly (and implicitly)
optimizes for the unknown covariance and system matri-
ces. On the other side, the Indirect KF (Q,R) is sensitive
to the estimation uncertainty of system matrices, and the
Indirect KF approach is sensitive to the uncertainty in
both system and noise covariance matrices.

REFERENCES

Milanese, M., Ruiz, F., and Taragna, M. (2010). Direct data-
driven filter design for uncertain lti systems with bounded noise.
Automatica, 46(11), 1773–1784. doi:10.1016/j.automatica.2010.
07.006.

Novara, C., Milanese, M., Bitar, E., and Poolla, K. (2012). The filter
design from data (fd2) problem: parametric-statistical approach.
International Journal of Robust and Nonlinear Control, 22(16),
1853–1872. doi:10.1002/rnc.1791.

Ruiz, F., Novara, C., and Milanese, M. (2010). Direct design from
data of optimal filters for lpv systems. Systems & Control Letters,
59(1), 1–8. doi:10.1016/j.sysconle.2009.10.008.



Anti-Windup-Like Compensator Design for Continuous-Time Systems
affected by Unknown Nonlinearities and Input Saturation

Folco Giorgetti, Francesco Ferrante, and Mario L. Fravolini

Abstract— This paper addresses the stabilization of a par-
ticular class of continuous-time systems affected by unknown
sector bound nonlinearities and input saturation. An observer
is designed to provide an estimate of the unknown nonlinearity.
Such an estimate is used by an additional compensation loop
with the purpose of mitigating the effect of the nonlinearity and
enlarge the basin of attraction of the system. Stability conditions
are given as a set of matrix inequalities and quadratic Lya-
punov functions are exploited. An optimal compensator design
algorithm based on semidefinite programming is proposed.

I. INTRODUCTION

A. Motivation and background

Most of real life systems are affected by nonlinear dynam-
ics that characterize different phenomena such as saturation,
backlash, friction, or hysteresis in actuators or sensors. For
this reason, the study of systems affected by nonlinearities
is of particular interest in the field of automatic control
[5], [6]. A widely used strategy to mitigate the effects of
nonlinearities like input saturation is to use anti-windup
loops. This technique works by modifying the control signal
to compensate for the effects of the input saturation on the
controller, improving the performance and stability margins
of the system. In the past years, this topic has been studied
by many researchers, see [11], [10], [4], [7] and [8] just
to mention a few. In this work, we focus our attention on
a specific class of systems affected by an unknown sector
bound nonlinearity and input saturation expressed by:

ẋp = Apxp +Gpϕ(Lpxp) +Bp sat(u)

yc = Cpxp
(1)

where xp ∈ Rnp and u ∈ Rm, are the state and input
and yc ∈ Rnc is the measured output used for feedback
control and sat indicates the standard symmetric decen-
tralized nonlinearity with saturation levels u01, u02, . . . , u0i.
Matrices Ap, Bp, Gp, Cp and Lp are real of appropriate
dimensions and are assumed to be known. The nonlinearity
ϕ : Rb → Rb is unknown and it is assumed that its
components are continuous and contained in a cone-bounded
sector characterized by a symmetric positive definite matrix
Ω ∈ Rnc×nc . Namely

ϕT (w)Λ(ϕ− Ωw) ≤ 0, ∀w ∈ Rb, ϕ(0) = 0; (2)

where matrix Λ ∈ Rnc×nc is any positive diagonal matrix.
Our objective is to design an anti-windup-like compensator

The authors are with Department of Engineering, University of Perugia,
06125 Perugia, Italy
folco.giorgetti@dottorandi.unipg.it,
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to mitigate the effect of the unknown state-dependent nonlin-
earity, using a strategy similar to that in [1]. The control and
stabilization of similar systems is tackled in [2] through the
synthesis of nonlinear state feedback controllers. In [2], the
authors assume the nonlinearity and the state of the system to
be known. In our case, however, the nonlinearity and the state
are unknown. To deal with this problem, we use an observer
that provides an estimate of the state and nonlinearity, based
on the constructions in [3]. The estimate of the nonlinearity
is used by an additional compensation loop with the objective
of maximizing the estimate of the basin of attraction of the
closed-loop system. For that purpose quadratic Lyapunov
functions are exploited. The stability analysis is based on
the application to our case of the sector conditions proposed
in [2].

Notation: The symbols R, Rn,Rn×n represent, respec-
tively, the set of the real numbers, the n-dimensional Eu-
clidean space, and the set of n × n real matrices. For a
square matrix A, we use the notation He(A) = A + AT

and trace(A) is the trace of the matrix A. Symbol ∗ stands
for a symmetric block in a symmetric matrix. The notation
Ai stands for the i− th row of matrix A. Given a symmetric
matrix A, A < 0 (A > 0) means that A is negative (positive)
definite.

II. PROBLEM SETTING AND KEY RESULTS

The system (1) is controlled by the following output
feedback dynamic controller

ẋc = Acxc +Bcyc, u = Ccxc +Dcyc + v (3)

where Ac, Bc, Cc, Dc are given and v ∈ Rnc is an additional
signal specifically designed to mitigate the effect of the
unknown nonlinearity. Inspired by the work of [9] and [1]
the signal v is chosen as v := Eϕ̂ where ϕ̂ is an estimate of
ϕ that is provided by an estimator. We also assume to have
an additional measured output y = Hpxp+Dpϕ(Lpxp) used
for the estimator design.

A. Outline of the proposed estimator
The observer is constructed based on a Luenberger-like

structure and it is defined as follows:

ξ̇ = Alξ +Bp sat(u) +Gpym + F (yl − ŷl)

ŷl = Hlξ

ϕ̂ = D+y −D+Hpξ = ym −Hmξ

(4)

where Al = Ap − BpD
+Cp, D+ is a left inverse matrix of

Dp and D⊥ is any full row rank matrix such that D⊥Dp =

0, and D+DP = Im,
[
Hm

Hl

]
= UHp,

[
ym
yl

]
= Uy where



U =

[
D+

D⊥

]
. Defining the error z = xp − ξ and its dynamic

the overall closed loop system is written as:

ẋ = Aclx+Bclψ(u) +Gclϕ(Lpxp)

ż = (Al − FlHl)z

u = Kx+ E(ϕ(Lpxp) +D+Hz)

(5)

where:

x :=

[
xp

xc

]
, Bcl :=

[
Bp

0

]
, Gcl :=

[
Gp

0

]
K := [DcCp Cc] , Acl :=

[
Ap +BpDcCp BpCc

BcCp Ac

]
.

and ψ(u) := sat(u)−u ∀u ∈ Rm. The problem we study
in this work can be formalized as follows

Problem 1: Determine a compensator gain E, and an
observer gain F and a region S0 ⊂ Rn×n, (where n :=
nc + np + nz), as large as possible, such that the origin of
the closed-loop system is asymptotically stable and S0 is
included in the basin of attraction of the origin.

B. Stability Analysis

Proposition 1: If there exist two symmetric positive defi-
nite matrices W ∈ R(nc+np)×(nc+np) and Q ∈ Rnc×nc , two
positive diagonal matrices ∆ ∈ Rnc×nc and S ∈ Rm×m and
matrices X ∈ Rm×nc , Z ∈ Rm×(nc+np), J2 ∈ Rm×nc and
E ∈ Rm×m satisfying
He(WAT

cl) BclED+Hp N1,3 BclS − WKT − ZT

∗ He(A
T
l Q − HT

l X) 0 HT
p N+TET + JT

2

∗ ∗ −2∆ −∆ET

∗ ∗ ∗ −2S

 < 0

(6)
where N1,3 = BclE∆+Gcl∆+WLT

clΩ, andW 0 ZT
i

∗ Q JT
2i

∗ ∗ u2
0i

 ≥ 0, i = 1, . . . ,m (7)

then, defining P := W−1, the gains E, and F and the
ellipsoid

E(P,Q) =

{
(x, z) ∈ Rn,

[
x
z

]T [
P 0
0 Q

] [
x
z

]
≤ 1

}
are a solution to Problem 1.

Condition (6) is a bilinear matrix inequality (BMI). There-
fore, directly exploiting such a condition is hard from a
numerical standpoint. To overcome this drawback, next we
propose set of sufficient LMI conditions that solve the
Problem 1.

Proposition 2: If there exist three symmetric positive def-
inite matrices W ∈ Rn×n, P2 ∈ Rnc×nc and Q ∈ Rnc×nc ,
two positive diagonal matrices ∆ ∈ Rnc×nc and S ∈ Rm×m

and matrices M ∈ Rm×p, Z ∈ Rm×n and Σ ∈ Rm×m

satisfyingHe(WA⊤
cl) BclΣ+Gcl∆+WLT

clΩ BclS−WKT−ZT BclΣ

∗ −2∆ −ΣT 0
∗ ∗ −2S −Σ

∗ ∗ ∗ −Q

 < 0

(8)
and [

W ZT
i

∗ u2
0i

]
≥ 0, i = 1, . . . ,m (9)

He(MTP2) + γI < 0

RT∆−1Q∆−1R− γI < 0
(10)

where R := D+Hl and M = Al − FHl. Then: the gains
E, and F and the ellipsoid

E(P1, P2) :=

{
(x, z) ∈ Rn,

[
x
z

]T [
P1 0
0 P2

] [
x
z

]
≤ 1

}
with P1 := W−1 are a solution to Problem 1

C. Optimal compensator design
To maximize the size of the basin of attraction of the

closed loop-system we define an optimization problem sub-
ject to the following constraints[

MW In
In W

]
> 0, MW = MT

W > 0 (11)

∆ ≥ c−1Ip (12)

Q− αIp ≤ 0. (13)

A suboptimal solution to Problem 1 is obtained using the
following two steps algorithm.

Algorithm 1
1. Solve

min
W,Σ,∆,P2,S,Q,Z,MW ,α

trace(MW ) + α (14)

subject to LMIs: (8), (9), (11), (12), (13).
2. Using the matrix Q computed in step 1, solve:

min
M,P2

trace(P2) (15)

subject to (10).
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Design and Stability of Dynamical Memory Networks:
From Hopfield to Firing Rate Models

Simone Betteti, Giacomo Baggio, and Sandro Zampieri

I. DYNAMICAL SYSTEMS FOR MEMORY RETRIEVAL

The second half of the twentieth century marked a pio-
neering era in the characterization of brain functions through
the use of dynamical models. This effort began with the
abstraction by McCulloch and Pitts of a neuron as a compu-
tational unit [1], followed by the groundbreaking description
by Hodgkin and Huxley of the neuron biochemical response
[2]. Since then, characterizing neuronal properties through
dynamical systems has become increasingly pervasive.

In the early 1980s, Hopfield’s seminal work [3], [4]
introduced the concept of attractor networks—dynamical
systems of computational units (neurons) that encode specific
patterns (memories) as equilibria of the system dynamics.
These attractor networks are governed by the dynamics:

ẋ = −x+ F(x,W ), (1)

where x ∈ RN denotes the activity of the neurons in the net-
work, W ∈ RN×N is the symmetric synaptic matrix defining
how the neurons in the network interact, and F : RN → RN

is a (nonlinear) synaptic field. The two main types of attractor
networks are Hopfield networks and firing rate networks, in
which the synaptic field F(·) is described via a (typically
nonlinear) activation function Φ: RN → [a, b]N . In most
cases, such activation function is taken to be diagonal,
i.e. such that Φi(x) = ϕ(xi) for all i = 1, . . . , N and
x ∈ RN . The Hopfield and firing rate networks differ in
terms of the choice and order of application of the activation
function.

Hopfield networks are classically defined by the au-
tonomous dynamics

ẋ = −x+WΦ(x), (H)

where the non-linearity is odd, non-decreasing and with
asymptotic values a = −1 and b = 1. The specific choice
of the activation function, as well as a biologically plausible
construction of the synaptic matrix W , has allowed for an
extensive analytical investigation of the retrieval properties
and storage capacity of the model [6]. In particular, memory
retrieval in these networks has been examined by applying
LaSalle invariance principle to the “energy” function

EH(x) = −1

2
Φ(x)⊤WΦ(x) +

N∑
i=1

∫ ϕ(xi)

0

ϕ−1(s) ds. (2)
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Despite its pioneering role in modeling memory dynamics,
the Hopfield model lacks a clear biological interpretation,
as it represents neurons as binary ±1 states akin to spin
magnets. The firing rate model of neural activity addresses
exactly this issue, through the adoption of an activation
function that is non-decreasing and with asymptotic values
a = 0 (neuronal inactivation) and b = 1 (neural activation),
and the following dynamics

ẋ = −x+Φ(Wx). (FR)

An important feature of the firing rate model (FR) is that it
preserves positivity of trajectories; more precisely, it can be
shown that the set [0, 1]N is forward invariant for (FR).

Despite its biological relevance, a thorough study of the
properties of the model (FR) seems to be missing. To the best
of our knowledge, the design of the synaptic matrix W for
assigning desired memories as equilibria of (FR) has been
addressed only for a restrictive choice of model parameters in
[5, Sec. 7.4]. Given the significance of the firing rate model
in representing neural activities during memory retrieval, we
present an in-depth and extensive treatment on the design of
the synaptic matrix of (FR) to store prescribed memories and
analyze the stability properties of such memories.

II. DESIGN OF THE SYNAPTIC MATRIX

In firing rate networks, memories are represented as
vectors encoding the distributed activity of neurons. Let
N ∈ N be the number of units in the network. We require
that at each memory retrieval exactly qN , for q ∈ (0, 1),
neurons are active, while all the others are inactive. The
prototypical memory patterns, representing the vectors with
the ideal neuronal activation during retrieval, are of the form
ξµ ∈ {0, 1}N , µ = 1, . . . , P , and satisfy the following
constraints

1⊤ξµ = qN µ = 1, . . . , P

ξν⊤ξµ = q2N ν = 1, . . . , P, ν ̸= µ.

which are satisfied in expectation for memories with i.i.d.
entries satisfying P[ξµi = 1] = q. Once the prototypical
memory patterns are given, it is necessary to fix a diagonal
activation function Φ(·) (e.g. a sigmoid, a rectified tanh)
and the values x0, x1 ∈ R, with x0 < x1, representing
the membrane voltages at neural inactivation and activation,
respectively. When these two ingredients are given, we deter-
mine the average activation rates y0 = ϕ(x0) and y1 = ϕ(x1)



and define the synaptic map

W : {0, 1}N×P → RN×N (3)

{ξµ}Pµ=1 7→
1

q(1− q)αN

P∑
µ=1

(ξµ−q1)(ξµ−q1)⊤+
1

γN
11⊤,

where α, γ ∈ R are defined as

α :=
y1 − y0
x1 − x0

, (4a)

γ :=
qy1 + (1− q)y0
qx1 + (1− q)x0

. (4b)

From a geometrical viewpoint, the parameter α > 0 is the
slope of the straight line intersecting the activation function
at the coordinates x0, x1, while the parameter γ ∈ R is the
slope of the line passing through the origin and intersecting
the line α(x−x0)+y0 at the coordinate xq = qx1+(1−q)x0.

Finally, we define the retrievable memories as ξ̄µ =
E(ξµ) = (y1−y0)ξ

µ+y01, µ = 1, . . . , P , which correspond
to the vectors of activations that the firing rate network can
actually retrieve. The following result shows how to map
prototypical memory vectors to equilibria of the firing rate
dynamics via a synaptic matrix of the form (3).

Theorem 1: (Assignment of memories through W ). Con-
sider the set of prototypical memory vectors {ξµ}Pµ=1. If
W = W(ξ1, . . . ξP ), then the vectors {ξ̄µ}Pµ=1, with ξ̄µ =
E(ξµ), are equilibria of (FR).

III. STABILITY OF MEMORIES

Assigning a set of prototypical memories as equilibria is
not enough for (FR) to function as a memory network; we
also need these memories to be (locally) attractive points
for the dynamics. To this end, we present a condition for
the local asymptotic stability of retrievable memories and
then expand on the topic by presenting a suitable “energy”
function ensuring global convergence to equilibria.

Theorem 2: (Local stability of memories). Consider the
set of prototypical memory vectors {ξµ}Pµ=1, let W be as in
Theorem 1, and define η := max{ϕ′(x0), ϕ

′(x1)}. If

ηmax{α−1, γ−1} < 1 (5)

then the equilibria {ξ̄µ}Pµ=1 of (FR), with ξ̄µ = E(ξµ), are
locally asymptotically stable.

It is worth pointing out that when γ < 0, i.e. when
the system receives a global synaptic inhibition, the local
stability condition (5) simplifies to

η < α. (6)

Similarly to the Hopfield model, it is possible to analyze
the global behavior of trajectories of (FR) by means of a
suitable “energy” function, namely

EFR(x) = −1

2
x⊤Wx+

N∑
i=1

∫ xi

0

ϕ−1(s) ds. (7)

It is easy to observe that (7) coincides with the energy of
the Hopfield model (2) under the change of variable y =

Φ(x). The following result, whose proof is based on LaSalle
invariance principle, establishes that for any initial condition
the trajectories of (FR) always converge to an equilibrium
point (potentially a desired memory).

Theorem 3: (Global convergence to equilibria). Consider
the function EFR(·) in (7), a synaptic matrix W as in
Theorem 1, and assume that ϕ(·) is non-decreasing and
differentiable. Then ĖFR ≤ 0 along the flow of (FR) and the
trajectories of (FR) converge to an equilibrium point of (FR).

In Fig. 1 we plot the energy function EFR over the region
of state space between two memories as γ varies. More
precisely, we let x1, x2 ∈ [0, 1] be interpolation param-
eters and define the vector having components vx1,x2

i =
min{1, x1ξ

µ1

i +x2ξ
µ2

i }, where ξµ1 and ξµ2 are two randomly
chosen prototypical memories. Fig. 1 shows the energy over
the mesh {vx1,x2 : x1, x2 ∈ [0, 1]} for γ < 0 and γ > 0
and a fixed sigmoidal activation function.
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Fig. 1. Profile of the energy function (7) along two randomly chosen
prototypical memories and two values of γ with opposite sign.

As observable from the figure, the case with γ < 0
favours attractiveness towards memories and repulsion
from spurious attractors of the form x = ζ1, ζ ∈ R
(corresponding to the critical point close to the origin in
Fig. 1). Conversely, when γ > 0, the basin of attraction
of the memories is smaller and the spurious attractors
gain stability. This numerical evidence seems to support
the fact that global inhibition (encoded in the parameter
γ) is crucial for the correct retrieval of memories in the brain.
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I. INTRODUCTION 

The nervous systems of leaving beings are the most 
intricate automatic control systems. They are responsible for 
functions such as locomotion, coordination, processing, and 
memory. Neuro-engineering aims at merging artificial 
intelligence and automatic control engineering with biology, 
psychology, chemistry, physics, medicine, and other sciences, 
to understand, reproduce and mimic the abilities of nervous 
systems, their structure and functions. Central to any nervous 
system is the spiking neuron, which plays a fundamental role 
in neuronal dynamics by ensuring efficiency and low-power 
consumption. Spiking networks model neurons behavior 
through discrete-event action potentials (spikes), allowing 
neurons to communicate via brief, rapid, thus low-power, 
impulses rather than continuous signals. Mathematical models 
and simple logic rules can efficiently mimic these 
characteristics, garnering significant scientific interest. The 
features of spiking signals, characterized by slow–fast 
dynamics, reflect mechanisms of accumulation and rapid 
energy release. 

Synaptic complex networks refer to the highly 
interconnected nature of synaptic connections within the brain, 
enabling a vast range of neural activities and computations. 
Studying these networks, especially at high dimensionality, 
allows to understand how they are essential for brain function, 
underpinning the communication and processing capabilities 
of neural circuits. They demonstrate robustness to faults and 
disturbances from the external environment. Analyzing and 
controlling these networks requires sophisticated approaches 
due to their complexity. Traditional tools and concepts from 
experimental computational neuroscience are insufficient, 
prompting the need for a new paradigm. This paradigm should 
reconsider spiking neuron models and their interconnection 
methods, aiming to closely mimic the behavior of biological 
neural networks.  

Moreover, multidimensional analysis necessitates to 
ensure adequate representation and interpretation. Under this 
perspective, neural networks working at high dimensionality 
are more suitable to cope with real-world complexity. 

These aspects are currently investigated within the PNRR 
project FAIR “Future Artificial Intelligence Research”. In 
particular, the research carried on by the authors of this 
communication is devoted to a twofold perspective on high 
dimensionality neural networks. On the one hand, the research 
aims at rethinking the concept of artificial neural networks for 
modeling complex dynamics by adopting a novel 
computational paradigm based on hypercomplex algebra. On 
the other hand, the possibility to represents higher order 
neuronal dynamics by recasting nonlinear models of neurons 
based on ordinary differential equations with matrix 
differential equations. 

The contribution will span these two intercorrelated 
aspects. In section II we will introduce the evolution of the 
traditional neural network towards a hyper-complex topology. 

The concept of Hyper-neuron will be introduced in section III. 
Section IV will summarize the current results and the future 
developments. 

II. HYPER-COMPLEX NETWORKS 

Processing extensive sets of interconnected data represents 
a crucial field with numerous practical uses, wherein machine 
learning and deep learning are pivotal through specific types 
of artificial neural networks (ANNs) like convolutional neural 
networks (CNNs) and other deep networks. In the past, 
Multilayer Perceptron (MLP) was a prevalent artificial 
network architecture; however, its adequacy for processing 
multidimensional data is limited as it necessitates a high 
number of parameters. Research indicates that leveraging 
alternative algebras, like complex numbers and quaternions, 
can enhance network performance without increasing, in fact 
reducing, the parameters number. 

A quaternion-valued multilayer perceptron (QMLP) is a 
MLP in which input, output, weights and biases are 
quaternions, and the activation functions are quaternion-
valued [1]. There is an isomorphism between a hypercomplex 
algebra ℍ and the vector space ℝ1+3. However, the algorithm 
for processing quaternions in a hypercomplex neural network 
differs from the simple vector product in the space ℝ 1+3. These 
computational specifics, tied to the properties of the Hamilton 
product, underlie the exceptional performance of 
hypercomplex networks in processing highly correlated 
datasets. Therefore, starting from a quaternion-valued 
multilayer perceptron (QMLP), it is necessary to properly 
develop the basic building blocks of a backpropagation-based 
algorithm on QNN, including activation functions, and the 
forward, backward, and update phases. The backpropagation 
algorithm for QMLPs is dual to the one adopted for classic 
MLPs. It is important to note that all the parameters are 
quaternions and that the product between the gradient and the 
derivative is a component-wise product.  

From an application viewpoint, QMLPs leverage the 
geometric and algebraic properties of hypercomplex numbers, 
offering potential for modeling three- and four-dimensional 
data. They find numerous promising applications in pattern 
recognition, classification, nonlinear filtering, advanced image 
processing, brain-computer interfaces, time-series prediction, 
bioinformatics, robotics, and other fields.  

The current research has been oriented towards improving 
the learning capabilities of QNNs by defining an approach 
based on the parallel training of smaller-sized auxiliary QNNs 
capable of predicting the outcome of the learning process of a 
set of internal weights of the main network. This exploits the 
parallel capabilities of modern processors and 
microcontrollers, thus paving the way for real-time practical 
applications [2-3]. Considering the Levenberg-Marquardt 
learning algorithm and its parallel implementation using 
auxiliary networks, the number of epochs needed to model the 
dynamics of a fourth-order chaotic Chua’s circuit can be 
substantially reduced [4], as shown in Figure 1. 



 
Figure 1 - Epoch comparison. Nhn is the number of adopted hidden neurons. 

Levenberg-Marquardt (left), and Levenberg-Marquardt with auxiliary 
networks (right). 

 

III. FROM NEURON TO HYPERNEURON 

Recent research has introduced the notion of hypersystems, 
building upon the concept of frequency transformation, which 
is an efficient method for designing high-order selective filters 
based on low-pass reference filters. While frequency 
transformation is suitable for linear systems [5], in the case of 
nonlinear systems, transformations in the time domain give 
rise to the concept of hypersystems [6]. 

Let us consider the dynamics of a generic nonlinear 
system: 

�̇� = 𝑓(𝑥, 𝑡) 
where: x ∈ Rn×1, f : Rn×1 → Rn×1 and t ∈ R+. 

Let us now consider the dynamics of an hypersystem 
defined as: 

�̇� = 𝐹(𝑋, 𝑡)̇  
where X ∈ Rn×(N×N), F : Rn×(N×N) → Rn×(N×N) and t ∈ R+. 

Hence, a hypersystem is derived from the scalar dynamics 
by substituting the state vector with a vector of n square 
matrices, each with dimensions N. Additionally, the scalar 
vector field f is replaced by a matrix field F. This implies that 
instead of n individual scalar state variables xi belonging to the 
set of real numbers, the dynamics of the hypersystem is 
characterized by n square matrices Xi belonging to the set of 
N×N real matrices. The dynamical properties of an 
hypersystem have been shown to be highly correlated to the 
dynamical properties of the corresponding “gene” scalar 
system. 

The formulation of the hyperneuron involves a larger 
number of initial conditions, compared to the scalar model, on 
which the dynamics of the system itself depends. Despite this, 
some models lend themselves very well to hyperdimensional 
implementation, showing peculiarities that go beyond what is 
shown in the scalar model. Furthermore, the growing 
computing power of embedded systems has allowed the 
implementation of some of these systems directly on 
microcontroller boards, giving rise to the silicon neuron 
paradigm. The algorithm to implement the hyperneuron on a 
microcontroller is essentially based on the Euler discretization, 
thus obtaining a discrete map. 

Recent experimental results, obtained by implementing 
two hyperneurons starting from the Hindmarsh-Rose and 
Morris-Lecar models respectively, have demonstrated the 
validity of the model's hyper-dimensionality paradigm. In both 
cases it emerged that the hyperneuron, compared to its scalar 
representation, presents greater robustness with respect to 
noise or faults, as reported in Figure 2 for the Hindmarsh-Rose 
model [6], and it is also possible to observe richer dynamics 
(i.e. chaotic bursting), not observable in the scalar model. 

These results confirm that the hyperneuron structures are able 
to mimic behavior related to an increased level of complexity, 
but without complicating the formulation of the neuron 
models. Moreover, the intrinsic nature of hyperneurons to be 
ready for digital implementations make then suitable for the 
realization of spiking neural networks with tunable behavior 
with several ground-breaking applications, including control. 

  
Figure 2 - Experimental robustness of the hyperneuron with respect to a 
persistent noise: (a) scalar Hindmarsh-Rose, (b) hyper Hindmarsh-Rose 

IV. CONCLUSIONS 

The aim of this contribution is to illustrate the recent results 
obtained within the framework of the PNRR project FAIR at 
the University of Catania. The extension of multilayer 
perceptron to hypercomplex topology (QNNs), and its 
optimization, and models for the neuron dynamics based on 
nonlinear matrix differential equations, referred to as hyper-
neurons, have provided innovative results that are the basis of 
a novel paradigm of high-dimensional neural networks. 

The numerous promising applications of QNNs, ranging 
from modeling nonlinear dynamics to orbital planetary motion 
and vibrating systems, make them suitable tools dedicated to 
modeling nonlinear systems that present a considerable 
amount of correlated data. It has to be stressed the fact that, 
despite it is possible to consider quaternionic extension of 
other types of neural networks, including Hopfield nets with 
quaternion Hebbian rules [7], the project focuses on multilayer 
perceptrons and their hypercomplex generalization. The 
intrinsic robustness of hyper-neurons allows them to maintain 
spiking behavior even in the presence of faults and learning 
errors, making them suitable to be implemented in real devices 
for control, especially when information and data are uncertain 
and affected by noise. 
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Abstract— In this paper, we formulate and solve a residual
generation problem that incorporates elements from both set-
based estimation and unknown input observers. The objective
is to determine whether the unknown input variables (e.g.,
possible faults) lie in a generic convex set of the input (fault)
space, without needing to estimate the exact value of these
variables. This extended abstract is based on [1].

I. INTRODUCTION

Unknown Input Observers (UIOs) assume a geometric
structure for the unknown input to decouple its effects, and
no bounds are needed for the unknown input. Conversely,
given a system with bounded uncertainties, the set member-
ship estimation returns a compact set of admissible values
for the observed variable (e.g., the state) that are consistent
with the (uncertain) model and measurements. Several set-
membership state estimators have been developed using
basic geometrical forms such as parallelotopes, ellipsoids,
zonotopes, or intervals (see [2] and references therein). In the
case of convex polytopic bounds, the uncertainty set is also a
convex polytope, and the corresponding updating algorithms
become computationally infeasible [3], as they suffer from
an explosion in the number of vertices and facets. Zonotopic
observers represent a compromise between exactness and
computational load, however, the number of facets still
increases in time, and reduction algorithms are necessary
to keep them computationally feasible [4]. Instead, interval
observers adopt simpler shapes to achieve computationally
efficient set-based estimations, and they can be applied to
linear time-varying discrete-time systems as well [2]. In this
paper, we formulate and solve the problem of detecting if
the unknown inputs lie in a convex set, without needing
to estimate the exact value of these variables. Such region
may represent a safety limit: as long as the fault does
not assume critical values, estimating the exact magnitude
of the fault may be unnecessary for Fault Detection and
Isolation (FDI). To solve such residual generation problem,
we present a set-based estimation approach for an unknown
input (fault) employing classical point-wise observers. This
approach offers two advantages with respect to traditional
set-based estimation:

1) the solution is not limited to zonotopes and intervals
but extends to convex (as well as non-convex) sets,
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2) there is no need for approximations or reduction algo-
rithms to manage the computational burden.

II. MAIN PROBLEM

The accessible state system

Σ : ẋ(t) = f(x(t), u(t)) + Pw(t) + Ed(t), (1)

is considered as plant, where x(t) ∈ Rnx is the state vector,
u(t) ∈ Rnu is the control input vector, w(t) ∈ Rnw is the
fault vector, and d(t) ∈ Rnd is the process disturbance vector.
Consider a pair of convex sets, here denoted as fault regions,
defined as

W = {w : Aw ≤ b}, Wϵ = {w : Aw − b ≤ −ϵ1̄}, (2)

where A = Rnr×nw , b ∈ Rnr , and ϵ > 0. We assume that
{} ⊊Wϵ ⊊W .

Problem 1. Consider the control system Σ and the fault
region W . Find an observer-based residual generator

ż(t) = Lz(t) + g(x(t), u(t)) + q (3a)
r(t) = h(z(t), x(t)) (3b)

where r(t) ∈ R is the residual and q ∈ Rnr is a design
parameter, such that

1) if w(t) ∈ Wϵ for t ≥ t0, then r(t) > 0 for t ≥ t′0 ≥ t0,
2) if w(t) /∈ W for t ≥ t0, then r(t) = 0 for t ≥ t′0 ≥ t0.

Proposition 1. If

rank
[
P E

]
= rank

[
P E
A 0

]
(4)

there exists a residual generator which solves Problem 1.

A pseudocode solving Problem 1 is provided in Algorithm
1. In case of many fault regionsW1, . . . ,Wm a bank of resid-
ual generators can be built, where each residual component
ri(t) is sensitive to the fault region Wi only and decoupled
from the disturbance d(t). The set of ri(t) can be considered
a robust structured residual, and in case case of disjoint fault
regions, also as a directional residual.

III. GEOMETRIC CONSIDERATIONS

Proposition 2. Consider a fault region W , and let aTi be
the i-th row of A. Condition (4) is satisfied if and only if
ai ∈ PT (ker(ET )) for i = 1, . . . , nr.

Roughly speaking, the condition w(t) ∈ Wϵ holds if
the hyperplane H̄i = {w : aTi w = 0} satisfies H̄⊥

i ⊂
PT (ker(ET )), which limits the shape of W .



Algorithm 1 Fault detection residual generator design.
Require: f(·, ·), P , E from Σ in (1), A, b of the faulty

region W to detect.
Ensure: Condition (4).

Find vectors v1, . . . , vnr satisfying the linear systems[
PT

ET

]
vi =

[
ai
0

]
Choose h1, . . . , hnr

> 0;
M ←

[
v1 . . . vnr

]T
;

H ← diag(h1, . . . , hnr
);

L← −H;
g(x, u)←Mf(x, u) +HMx;
h(z, x)←

∏nr

i=1 ramp(eTi (z −Mx));
q ← b− ϵ

2 1̄;

Fig. 1. Examples of fault regions obtained through set intersection and
subtraction.

IV. APPLICATION TO FAULT DETECTION AND ISOLATION

Using intersection and set subtraction, it is possible to
isolate non-convex regions. Figure 1 shows four bidimen-
sional examples. Let r1(t) and r2(t) be two residuals for
the isolation of W1 and W2, respectively. The isolation of
W1∩W2, W1∪W2 and W1\W2 could be achieved through
the decision rules

w(t) ∈ W1,ϵ ∩W2,ϵ if r1(t) > 0 and r2(t) > 0, (5a)
w(t) ∈ W1,ϵ ∪W2,ϵ if r1(t) > 0 or r2(t) > 0, (5b)
w(t) ∈ W1,ϵ\W2,ϵ if r1(t) > 0 and r2(t) = 0. (5c)

V. CASE STUDY: MULTIROTORS

Consider a multirotor model with na actuators under
multiplicative actuator faults. Choosing proper body fixed
coordinates and input transformation, the multirotor takes the
structure (1), where PT =

[
0 0 FT

1 FT
2

]
∈ Rna×12 and

ET =
[
0 0 I 0

]
∈ R3×12. According to Proposition

(1), a fault region W = {w : Aw ≤ b} can be isolated if

rank
[
P E

]
= rank

[
F1 I
F2 0

]
=

F1 I
F2 0
A 0

 (6)

holds. Geometrically, there exists a residual generator for
{w : aTi w ≤ bi} if ai ∈ PT (ker(ET )) = Im(FT

2 ).
Consider the special case of a quadrotor, with na = 4 and

F1 =

0 0 0 0
0 0 0 0
1 1 1 1

 , F2 =

 l 0 −l 0
0 l 0 −l
cT
cD

− cT
cD

cT
cD

− cT
cD

 ,

where cT and cD are the thrust and the drag coefficients. Due
to the full rank of

[
FT
1 FT

2

]
, it is possible to select fault

regions W1, . . . ,W4 such that in case of no faults w(t) /∈
Wi for i = 1, 2, 3, 4, and in case of a fault (of prescribed
magnitude) on the ith motor only, w(t) ∈ Wi and w(t) /∈
Wi for j ̸= i. A residual ri(t) is designed to trigger on
Wi, and the fault isolation for the ith motor is triggered
when ri(t) > 0. A simulation is carried out using Matlab
Simulink, for a total time of 30 s and a sample time of 10−3

s. A low frequency external disturbance is injected in the
linear acceleration. We inject a loss of effectiveness at 10
s, and a 50% of loss is accomplished at 15 s. The residual
components ri are instead reported in Figure 2. After the
fault is injected, the residual r1(t) triggers when a sufficient
fault magnitude (30%) is reached, while rj(t) = 0 for j ̸= i.

0 5 10 15 20 25 30
t[s]

0

2

4
r1

r2

r3

r4

Fig. 2. Residual.

VI. CONCLUSIONS

The proposed solution offers a residual that indicates
whether the unknown variables belong to a predefined re-
gion or not, making it well suited for FDI. Simulation
results demonstrate the practical application of the proposed
observer-based solution in a case study involving actuator
FDI for an autonomous quadrotor vehicle. Future works
involve addressing non-accessible state and the joint problem
of both passive and active disturbance rejection.
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Sapuppo1, and M.G. Xibilia1
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The paper will show an application of the Hardware In the Loop (HIL)
approach realized to verify the stability properties of the implemented fractional
order PIλDµ controller [1].

HIL simulation is a form of real-time simulation used for testing controller
designs. It allows to evaluate how the designed controller reacts in real-time
to realistic virtual stimuli and helps validate plant model and fine tune the
controller.

In HIL simulation, a real-time computer is used as a virtual representation
of the plant while a physical controller is used during the experiment. In our
application an Arduino 2 has been used to implement the Grunwald-Letnikov
approximation of the designed PIλDµ controller.

A typical HIL simulation setup consists in: the computer that hosts the
Matalb/Simulink© closed loop system, along with an interface, usually the
ControlDesk© program, used to manage the virtual plant parameters; the target
hardware that in our application is a DSpace© DS2201 Multi I/O Board and
the controller hardware, the Arduiono 2, that runs software generated from the
controller model, again developed in the Matalb/Simulink environment.

The interest toward fractional control is increasing [2], but commercial ap-
plications are far to be identified and realized. The HIL approach can help, in
a realist way, in verifying the performance of the fractional controller, in terms
of approximation, CPU speed, quantization and DAC-ACD effects, and at the
same time allows to test its stability versus plant parameters variations.

The simulated closed loop system is proposed in [3] and is composed by a
first order system with a delay and the fractional PID controller.

Figure 2 reports preliminary tests on a classical PI and PIλ controller.
In particular, in a-d for the PI controller, the Arduino schematic, the Dspace
scheme, the step response, the control signal on Arduino and step response on

1



ControlDesk are shown, while in e-f for the PIλ, the Arduino schematic with
PIλ controller and its step response and control, are depicted.

]

Figure 1: Preliminary tests on a classical PI and a PIλ controller.
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ABSTRACT 

With the advancements in the radiation delivery techniques and modern Linac systems, the need 

for better quality control devices also arises. Different devices manufactured by companies are 

available at hospitals and some of these devices are found to be more accurate in one category 

then others. The main objective of this study to analyze the dosimetric parameters of linear 

accelerator was to use PTW QUICKCHECK device at radiotherapy department of BINO 

hospital, Bahawalpur and evaluate their performances in checking the beam uniformity and 

symmetry in daily QC and other required periodic QC tests. For Daily Quality Control PTW 

QUICKCHECK device was used daily in the morning checks for 50 days to monitor CAX, beam 

flatness, GT symmetry, LR symmetry, Beam Quality Factor for electron beam of 6, 9, 12, 15, 18, 

22 MeV energies and photon beam of 6, 15 MV energies with 100 MU given to the QUICK 

CHECK device at dose rate of 300 MU/min. To ensure the stability of data monitored through 

QUICKCHECK repeatability and reproducibility tests were performed. PTW QUICKCHECK 

device can be easily setup on daily basis for daily checks. According to the results it is clear that 

PTW QUICKCHECK device is quite accurate with regard to symmetry measurements as all data 

is within tolerance range (3%). However, accuracy in flatness measurement shows uncertainties 

i.e for 6 MV 7.3%, for 15 MV 7.31%, for 6 MeV 16.12%, for 9 MeV 6.92%, for 12 MeV 5.92%, 

for 15 MeV 4.01%, for 18 MeV 4.01% and for 22 MeV 4.13% of data are within tolerance 

range. 

For treatment delivery, CLINAC IX by VARIAN medical system was under operation at BINO 

hospital. The MV imager known as the Electronic Portal Imaging Device was placed for image 

purposes. Energy options of 6MV and 15 MV for photons and 6Mev, 9Mev, 12Mev, 15Mev, 

18Mev and 22Mev were available for electrons.  

The purpose of this research is to check the consistency of photon beam and electron beam in 

linear accelerator used for radiotherapy and also examine the dosimetric parameters of linear 

accelerator to be used in highly conformal radiation therapy. The deviation of flatness, 

symmetry, CAX and beam quality factor were compared with data taken from PTW 

QUICKCHECK device, also reproducibility and repeatability was determined. 

Based on the result, this study suggest that linear accelerator is reliable dosimetric tool in 

radiotherapy. Linear accelerator can be used for dose assessment of absorbed dose levels as well 
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as relative dosimetry when compared to absolute absorbed dose calibrated using QUICKCHECK 

device results. It does not depend on side orientation and also not affected by room light. PTW 

QUICKCHECK device can be easily set up on daily bases for daily checks. 

Keywords: PTW QUICKCHECK device, Flatness, Symmetry, Central axis, dosimetry, Quality 

assurance, Linear accelerator 
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Management and automation systems for 
energy management in buildings and 

industrial processes 
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The building sector plays a crucial role in global decarbonization and energy efficiency 
efforts. According to the International Energy Agency’s 2022 report, this sector is 
responsible for 27% of global energy-related emissions. Additionally, the significant 
energy savings potential in buildings has made optimal control in this area a popular 
research topic in recent years. [1]- [7] 

This project focuses on the optimization and energy management of buildings, both 
residential and industrial, aiming to maintain thermal comfort while reducing energy 
consumption costs. The proposed approach incorporates renewable energy sources, 
such as solar panels, and includes battery energy storage and the use of the building 
structure as thermal storage. 

Since the thermal comfort can strongly depend on the thermal behavior of the building, 
a first analysis will be devoted to design the building such that the variation of the 
internal temperature is significantly small with respect to the daily variation of weather 
conditions. The building is considered as a thermal storage unit, where the building 
behaves as a low-pass filter, whose characteristics depend on its thermal 
characteristics, such as thermal transmittance and capacity. In addition, a second 
approach involves controlling the building’s temperature according to the user's 
preferences by adjusting the output air temperature and scheduling the operation 
times of a HVAC system, exploiting the thermal storage characteristics of the building 
to reduce the economic and environmental cost of the use of energy. 

A grey-box model is suggested to estimate the building's thermal parameters through 
a physical thermal model. In this context, a physics-informed neural network can be 
applied to speed up computing time. The optimization problem can be framed as a 
constrained optimization problem or a multi-objective optimization problem, depending 
on the chosen scenario. 

This study highlights the potential for significant energy savings and cost reductions 
through optimized energy management and control in the building sector, contributing 
to broader decarbonization efforts. 

 

Keywords: Thermal comfort- Constrained optimization- Multi-objectives optimization- 
Energy management- Physics-informed neural network. 
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Abstract—Predicting the response to Trans-Arterial Chemoem-
bolization (TACE) is crucial to personalize the treatment of
hepatocellular carcinoma, improving therapeutic efficacy and
prognosis and reducing side effects. This study has the aim
to design and develop an autonomous intelligent system to
predict the response to TACE using advanced machine learning
techniques. Pre-procedure CT and clinical data from 105 patients
were employed and time-to-progression treatment was used to
discriminate if a patient is responsive or non-responsive. Different
machine learning models were tested with a narrow selection of
both clinical and radiomics features as input to discover the most
effective way to assist doctors in their clinical practice.

I. INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most com-
mon causes of cancer-related deaths globally. Treating is intri-
cate and varies with the tumor’s stage. In surgically inoperable
cases and in advanced stages, the clinical practice includes
treatments that act on the vascular system of the carcinoma,
mainly formed by arteries. Among these, one of the most
used is the Trans-Arterial Chemoembolization (TACE) which
consists in the insertion of a catheter for the injection of a
chemotherapy drug into the artery through which the tumor
feeds. This technique has a dual action, a pharmacological one
due to the toxic effect of chemo drug and an embolizing one
that physically blocks the blood supply to the tumor tissue.
The goal of the treatment is the complete destruction of the
tumor or size reduction to enable subsequent resection or
transplantation. Since both HCC diagnosis and post-treatment
control are based on CT, they can be exploited to predict
whether or not a patient will respond to the healing effects
of TACE. In fact, knowing in advance the optimal therapeutic
path for a patient with HCC can increase the patient’s overall
survival and greatly reduce the risk of progression of the
disease. In clinical practice, the prediction of the response to
TACE treatment is entrusted to clinical scores that consider a
few factors. In recent years, machine learning techniques have
been applied to both clinical data and imaging to try to find
new ways to predict the response by combining different types
of features. However, current state-of-the-art methods have
several limitations such as the lack of sufficient robustness
and generalizability across different patient populations and
clinical settings due to the heterogeneity of HCC and there is
no comparison between different methodologies on the same
dataset. This work aims to design and create an autonomous
intelligent data-driven system to forecast the response to TACE
by utilizing quantitative features derived from CT images and
clinical information. In particular, starting from clinical data

and features extracted from CT images, the most important
features are selected through correlation analysis and statistical
methods. The impact of different combinations of input fea-
tures on different machine learning models is then investigated
to find the best model in terms of accuracy and area under ROC
curve (AUC) to determine whether a patient is responsive or
non-responsive to treatment

II. MATERIALS AND METHODS

A. Dataset

The data obtained from the cancer imaging archive includes
105 HCC patients’ pre and post-procedural CT scans and
clinical information who were treated with TACE. Manual
segmentation of the tumor on the venous phase was performed
by three expert radiologists. Time to progression (TTP) infor-
mation from the patient’s clinical data was used to evaluate the
TACE response. A 14-week TTP cutoff was taken to stratify
the response of patients to the first TACE session as TACE-
refractory or TACE-susceptible according to Moawad et al. [1].
Clinical data includes, in addition to demographic, lifestyle
and comorbidity factors, specific information on cancer, treat-
ment and radiological response criteria. After removing the
features that did not have 50% of the values and patients
who have missing values and the patients who lack clinical
data, 89 patients were retained. Quantitative computational
image analysis, termed radiomics, was used to extract various
features from the region of interest of the lesion.

B. Radiomics features extraction

The features extracted from the images include first-order
features, shape features and texture features. All these features
were extracted both from the original image and from many
filtered images. The filters used for the analysis was Laplacian
of Gaussian (LoG), Wavelet, Square, SquareRoot, Logarithm,
Exponential, Gradient and Local Binary Patterns (LBP). All
the series were resampled to a spacing of 1 mm × 1 mm × 1
mm to avoid having results dependent on the CT acquisition
setup. We used PyRadiomics library to extract all the 2016
features. Through a literature analysis, the most effective and
useful methods for feature selection in similar studies were
analyzed [2].

C. Feature selection

As a first step, a correlation analysis was performed. In
particular, features with a Pearson coefficient greater than
0.85 were eliminated. The AUC obtained from two logistics



regression models trained with each feature was the criterion
for selecting which characteristic of a pair of correlation
characteristics had to be maintained. Subsequently, the features
maintained after correlation analysis were further selected
through a least absolute shrinkage and selection operator
(Lasso) analysis after which they were normalized with z-score
normalization. Lasso automatically selects the relevant char-
acteristics by regularizing the coefficients through a penalty
term. This model is frequently used in machine learning to
handle high dimensional data as it facilitates automatic feature
selection with its application. A 10-fold cross-validation on
a single Lasso model was performed to select the optimum
value of this penalty term. The result is a model that is used
to compute a score, called RadScore, calculated as:

RadScore = q +
N∑
i=1

c(i) ∗ f(i) (1)

where q is the intercept, c(i) the coefficient of the retained
feature f(i). Clinical risk factors were selected by univariate
and multivariate logistic regression analyses via a backward
step-wise process. Factors with p-value < 0.1 in univariate
logistic regression were included in multivariate analysis and
those with p-value < 0.1 were identified as independent risk
factors.

D. Machine Learning Models

Five machine learning models were trained to assess which
is the best model and which is the best combination of features
for predicting the effectiveness of treatment for each patient.
The models are:

• Logistic Regression (LR)
• Support Vector Machines (SVM)
• Random Forest (RF)
• Extreme Gradient Boosting (XGB)
• Multi Layer Perceptron (MLP)

Every single model was tested with three different input
sets: only radiomics features, radiomics features combined
with clinical features and clinical features combined with
RadScore. Every model was trained with 5-fold cross-
validation and the performances were evaluated based on area
under Receiver Operating Characteristic curve and accuracy.

III. RESULTS

After deleting correlated features and performing a Lasso
analysis, only 12 of the 2016 extracted radiomics features were
elected as significant for prediction while the only clinical
feature that met the requirements was the variable hepatitis
that indicates whether a patient does not have, has hepatitis
B or C virus or both of them. In Table I all the results were
shown for the aforementioned models.

In general, the clinical variable increases the performance
of prediction when is taken into consideration by models. The
results in terms of accuracy and AUC show how the RF model,
analyzing ’hepatitis’ and RadScore can effectively predicts
patients’ response to TACE. Comparing these models based on

Input Features Model Performance Test
ACC AUC

Clinic
⋃

RadScore

LR 0.7284 0.8759
SVM 0.7706 0.8465
RF 0.8266 0.8726

XGB 0.8386 0.86
MLP 0.7824 0.8569

Radiomics Features

LR 0.7699 0.8357
SVM 0.7922 0.8394
RF 0.6895 0.7624

XGB 0.6895 0.7529
MLP 0.7582 0.8263

Radiomics Features
⋃

Clinic

LR 0.781 0.8582
SVM 0.7804 0.8462
RF 0.7007 0.7542

XGB 0.7007 0.7515
MLP 0.7464 0.8201

TABLE I
COMPARISON OF MODEL PERFORMANCE ACROSS DIFFERENT INPUT

FEATURES

accuracy and AUC, some configurations lead to higher AUC
but much worse accuracy indicating potential issues such as
overfitting. The results show how RF manages both to achieve
high accuracy in its predictions and to maintain a strong AUC,
indicating its robustness in distinguishing between classes.

IV. CONCLUSION AND FUTURE WORK

This work seeks to find an effective and robust way to
predict whether a patient is responsive or non-responsive to
Trans-Arterial Chemoembolization. Through radiomic anal-
ysis of pretreatment CT images and clinical data, we lead
to build an autonomous intelligent system that involves a
sought-after set of features. Among different machine learning
models, the Random Forest model predicts with great accuracy
the response using only hepatitis and RadScore. However,
emerging deep learning models, particularly Convolutional
Neural Networks (CNNs) and Transformers, present promising
avenues to predict a treatment response from medical images.
CNNs and Trasnformers can automate and enhance feature
extraction from imaging data which are less interpretable than
those extracted from radiomics analysis but can build robust
and accurate models, more useful in clinical practice. Future
works will focus on the combination of different methods
to extract information from images to develop systems that
could improve both the clinic decision-making process and
the prognosis for patients.
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Abstract—Colorectal cancer is the third most frequently diagnosed
cancer globally. Colonoscopy is crucial for screening, aiming to detect
and treat malignant or pre-malignant polyps. However, the accuracy
of this procedure is influenced by factors such as physician expertise,
lighting variations, artifacts and differences in imaging modalities. This
study conducts a comprehensive literature review on automatic polyp
segmentation and detection methodologies, emphasizing unsupervised
methods.

I. INTRODUCTION

Colorectal cancer (CRC) is the third most frequently diagnosed
cancer and its early detection significantly improve the survival
rate. Colonoscopy is the gold standard procedure for diagnosis and
removal of colorectal lesions.

The accuracy of detection and classification in colonoscopy proce-
dures is influenced by several factors: the experience of the physician,
the color variations in images/videos due to lighting conditions (Fig.
1 a), differences in polyp size and shape, indistinct boundaries, and
multiple polyps (Fig. 1 b, d), as well as artifacts like specularity, float-
ing objects, stool, bubbles, pixel saturation, and surgical instruments
(Fig. 1 c). Differences in image centers and modalities (WLE, NBI,
BLI, FICE, and LCI) (Fig. 1 e, f) also contribute to the complexity
in the detection and classification of colorectal polyps.

Fig. 1. Factors affecting the accuracy of polyp detection and classification in
colonoscopy. Yellow bounding boxes are used to highlight the polyps.

Autonomous intelligent systems have the potential to improve en-
doscopic practice by enhancing inspection techniques, automatically
detecting CRC lesions and facilitating real-time diagnosis through
optical biopsy. Based on the level of supervision, Deep Learning
(DL) methods used for polyp detection and segmentation can be
classified into fully-supervised, semi-supervised, weakly-supervised
and self-supervised approaches [1, 2]. Traditional methods are trained
using fully-supervised approaches, where a model is trained using
a dataset with pixel-level annotations, relying on extensive manual
labeling to achieve high performance. While fully-supervised models
can deliver high performance, they depend on large and balanced
datasets with pixel-wise labels. Consequently, many researchers are
turning to semi-supervised learning, which need limited labeled and
unlabeled data. To reduce reliance on pixel-wise annotations, some

have adopted weakly-supervised approaches using point, semantic
label, scribble, and bounding-box. Additionally, some researchers are
using unsupervised methods. Self-supervised learning is a subset of
unsupervised learning. Both methods do not use labels in the training
process, focusing on learning intrinsic patterns in unlabeled data.
Unsupervised learning does not measure results against any pre-
known ground truth and is used for tasks like clustering and anomaly
detection, deriving utility from discovering hidden correlations. In
contrast, self-supervised learning measures results against a ground
truth derived from the data itself and uses a loss function to optimize
model accuracy.

This work focuses on a literature review on unsupervised polyp
segmentation and detection methods in colonoscopy images and
videos.

II. METHODOLOGY

To provide a comprehensive overview of the research topic on
DL applied to the analysis of gastrointestinal endoscopy images and
videos, a set of related publications was selected. An initial group of
articles was retrieved through an electronic search on the Scopus®

. As a result of this process, 14 articles were included for the
scope of this work and 4 surveys. Exclusion criteria were applied
to omit papers addressing different topics, not utilizing deep learning
techniques and employing supervised, semi-supervised and weakly-
supervised methods. Additionally, the research involved identifying
public datasets. Eleven open public datasets were identified, including
3 video-level datasets and 10 image-level datasets. Although 4
surveys were identified, they do not focus exclusively on unsupervised
methods. Instead, they consider models used for detection and/or
segmentation across all four levels of supervision. This highlights
the need for a survey dedicated solely to unsupervised methods. In
this work, the state-of-the-art models for unsupervised detection and
segmentation of polyps were studied, identifying those capable of
performing automatic segmentation and detection. Furthermore, the
available public datasets relevant to this research area were analyzed.

III. DISCUSSION

In medical image analysis, various methods are employed to
address the challenges of automatically detect and segment polyps
in colonoscopy images and videos. This section delves into the
polyp datasets description, the effectiveness of unsupervised methods,
strategies to enhance model generalizability and the importance of
addressing domain shifts through domain adaptation.

A. Unsupervised Polyp Detection and Segmentation

Advancements in Computer Vision and Machine Learning have
improved medical image analysis, especially with DL models. These
models require extensive labeled datasets and are prone to overfitting,
leading to increased interest in unsupervised learning approaches.

Analyzing the identified papers, the unsupervised polyp detection
and segmentation methods can be divided into two methodologies:
reconstruction methods and self-supervised approaches [3–6].



Reconstruction-based methods detect and localize polyps by
reconstructing a negative/polyp-free/healthy image and computing the
difference between the test image and the reconstruction. Common
architectures include Autoencoders (AEs) and Generative Adversarial
Networks (GANs). During AE training the encoder compresses
input images into a lower-dimensional latent space and the decoder
reconstructs the images from this representation. The model is trained
on negative images, minimizing the reconstruction error, which is the
difference between the original and reconstructed image. During the
inference phase with test images, the AE reconstructs the image. The
differences between the original test image and its reconstruction
highlight areas where the model failed to accurately recreate the
image, indicating potential polyps. Polyp-ODD and MemMC-MAE
are based AEs [3], achieving results on the order of 0.90 AUC (Area
Under the Curve) for the detection task and 0.40 IoU (Intersection
over Union) for the segmentation task. Another reconstruction-based
method involves GANs that are trained adversarially, improving
the generator’s ability to create accurate reconstructions of negative
images. The difference between the original and reconstructed images
is used to detect polyps. For example, f-AnoGAN combines these
differences with additional features learned by the discriminator.
Areas with high reconstruction errors are segmented as polyps, as the
GAN struggles to accurately reconstruct these regions. F-AnoGAN,
ADGAN and AnoGAN are GAN-based methods [3]. These methods
are used for polyp detection, achieving results on the order of 0.90
AUC. The segmentation performance has been evaluated qualitatively.

Self-Supervised Learning (SSL) methods is designed to learn
useful representations from data without requiring manual annotation.
The process starts with an unlabeled dataset, using a feature extractor
to learn meaningful representations. The feature extractor is trained
using a pretext task, designed to teach the model to understand the
data better. Examples of pretext tasks include predicting the rotation
of an image, inpainting missing parts of an image, solving jigsaw
puzzles. Once the model has learned useful features from the pretext
task, the acquired knowledge is then leveraged through transfer
learning and domain adaptation, enhancing the model’s performance
on downstream tasks such as polyp detection and segmentation.
Examples of SSL methods applied to medical image analysis include
PMSCAL achieving an AUC value of 0.996 and IoU of 0.406,
CDD [4] achieving an AUC of 0.972 and IoU of 0.372.

A challenge with unsupervised methods is learning effective image
feature representations, which is crucial for detecting lesions in med-
ical images due to their subtle differences from healthy tissues. These
methods can overfit to negative training data, leading to ineffective
representations and failures in lesion detection and segmentation. Al-
though ImageNet-based pre-trained models are commonly used, they
might not be ideal because the features learned from natural images
do not align well with medical images. This representation challenge
can be addressed using methods based on SSL and reconstruction
techniques.

B. Enhancing Model Generalizability

Most datasets are imbalanced with more negative/healthy images
than positive/diseases ones. Unsupervised methods offer advantages
in this context. Firstly, acquiring the training set is simple since most
screening datasets consist of standard images, removing the need to a
large number of positive images for training. Secondly, these methods
do not require a representative training set containing positive images.
Fully-supervised DL models require numerous annotated pixel-level
ground truths, which are resource-intensive and time-consuming to
create. Unsupervised learning reduces reliance on the large annotated

datasets and improves generalization to unseen data, addressing the
issue of dataset imbalance and enhancing the model’s ability to detect
and classify polyps in diverse real-world medical images.

C. Addressing Domain Shifts with Domain Adaptation

DL models typically assume that training and test datasets share
the same distribution and modality, which is often not the case
in real-world scenarios. When the distribution of the test dataset
differs from that of the training dataset, the model’s performance
significantly declines. To effectively apply DL in medical image
analysis, addressing domain shift is crucial. Domain adaptation has
emerged as a promising solution, aiming to reduce the distribution
gap between different but related datasets. Enhancing the model’s
robustness and adaptability can be achieved by incorporating data
from multiple centers and various imaging modalities, addressing
limitations related to variations in imaging conditions and equipment.

D. Polyp Datasets

Colonoscopic datasets can be categorized into two types: image-
level datasets and video-level datasets [1]. Image-level datasets con-
sist of individual frames taken from colonoscopy videos. Video-
level datasets comprise entire video sequences captured during
colonoscopy, providing a comprehensive view of the procedure and
enabling the analysis of temporal dynamics and polyp tracking.

IV. CONCLUSION

This study has presented a comprehensive literature review on
automatic polyp segmentation and detection methodologies, with a
particular focus on unsupervised methods. While significant progress
has been made in this field, several challenges remain to be addressed.
Future research should aim to optimize these methods for medical
image analysis by incorporating domain-specific knowledge, enhanc-
ing the generalizability of models to diverse and unseen data and
improving models robustness.
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Sequential control of Autonomous Mobile Robots (AMRs) at different levels has been a
standard area of application of Deep Reinforcement Learning (DRL) over the past decade. This
latter machine learning technique is notably less prone to the so called curse of dimensionality
[1], with respect to optimization-based strategies, namely it is particularly adapt to large and
highly dynamic environments. Besides that, the intrinsic formulation of model-free DRL [2]
often produce controllers which are quite robust to unknown, even stochastic, dynamics, a topic
that was historically considered of fundamental importance by researchers of the field and thus
studied in various forms.

One of the key properties, yet rarely examined, when it comes to robots’ long-term indepen-
dence is the energy-awareness. The used expression implies more than just finding a minimum-
consumption solution; it rather refers to the capability of autonomously discerning whether the
energy left is sufficient in relation to the job and, whenever the scenario permits that, taking an
action in favour of a battery recharge. Implementing such behaviour in a brutal force fashion,
namely imposing a Return-to-Home (RtH) if battery drops below a certain level, would turn
out to be a safe but too conservative solution, especially when dealing with complex operational
scenarios.

The present work presents a DRL framework for an energy-aware high-level decision-making
in a graph environment. A graph is in fact an abstract concept that can be applied to a wide
variety of fields, fully justifying its use in a high-level control problem. To the best of the author’s
knowledge, [3] was the only previous paper in which the energy-awareness feature was properly
included in the DRL formulation. Here, we try to further optimize the agent’s behaviour by
reshaping the reward feedback, penalizing both low battery levels as well as unnecessary time-
wasting recharges.

As applicative case, we imagined a scenario where an autonomous service robot must react to
alarms due to failures in its area of interest; the robot must have onboard the necessary servicing
tool by resorting to a tool change station, reach the area of the failure and fix it, while at the same
time managing its battery status. Once trained the model via Double Deep Q Network (DDQN)
with Prioritized Experience Replay (PER) for around 5e5 epochs, Fig.1 depicts a typical mission
route on an arbitrary defined map. A common pattern to most of the episodes is that the agent
first seeks to reach the warehouse to pick the tool corresponding to the failure type and eventually
recharges itself if it finds it necessary. This occurs almost in every circumstance, except in those
lucky ones in which the UAV is initialized with the same tool requested by the target; only then
the path to the failure location may be direct without intermediate stops, provided that the
battery to do so is sufficient.

1



Figure 1: A graphical representation of the agent’s optimal behaviour. The graph utilized as test-
bed contains 35 nodes (green), among which 4 are targets (red) and 2 are warehouses (light blue).
The active target is the one with the thicker black edge. All nodes are randomly positioned. Arcs
are non-oriented and inserted without any logic. Moves along neighbouring nodes are indicated
with red arrows.

As a last note, we remark that, although the proposed scenario is quite simple and a mixture
of other "classical" techniques (e.g. shortest paths, decision trees etc.) might be employed to
achieve a similar result, this experiment should be regarded as a proof of concept. We in fact
identified this as a starting point for possible future contributions, for instance exploiting multiple
intelligent agents communicating to cope with more challenging tasks and environments.
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Abstract—Multiple Sclerosis (MS) is a chronic autoimmune disease that
affects the central nervous system. Motor Evoked Potentials (MEPs) could
provide insights into neural conduction and motor cortex functionality.
Digital Twin (DT) has recently been proposed as a new paradigm that can
implement individualized, innovative disease management through arti-
ficial intelligence models, dealing with the multidimensional complexity
of several pathologies. This paper investigates a DT approach to predict
motor disability progression in patients with MS by processing MEPs.
Generative Artificial Intelligence (GAI) models have been deployed
employing a Vision Transformer (ViT) for classification and a Class-
Informed Variational Autoencoder (CI-VAE) for data augmentation. This
approach utilizes a longitudinal dataset to forecast the progression of
disability by evaluating variations in the Expanded Disability Status Scale
(EDSS). DT driven by GAI for data management, analysis and modeling
can be a promising paradigm for precision medicine.

I. INTRODUCTION

Multiple Sclerosis (MS) is an inflammatory, immune-mediated
and demyelinating disease of the central nervous system (CNS)
characterized by a wide range of symptoms, disease courses and
treatment responses. In fact, as the inflammatory and neurodegen-
erative process can involve a variety of different neuroanatomical
locations in CNS, many functional neurological systems can be
affected, ranging from visual, motor, cerebellar, sensory and cognitive
problems. The prognosis is unpredictable and variable as a subset
of patients show a benign course with minimal or none disability,
while others may present progression and accumulation of significant
disabilities leading to functional impairment. However considering
that a reliable prediction of the disease course of MS is a requirement
for individually tailored disease-modifying therapy, the monitoring
and the prevention of progression become very crucial for patients.

Evoked Potentials (EPs) measurements provide an insight in neural
conduction by stimulating a specific area of the nervous system and
measuring the resulting signal at a determined area of the body.
Specifically, Motor Evoked Potentials (MEPs) are acquired through
the stimulation of the motor cortex (M1) using transcranial magnetic
stimulation (TMS) while the electrodes are placed on hands and feet
providing information on the signal conductivity from motor cortex
to limbs. Therefore they can be a useful source of information of the
patients’ motor disability and be used for the prediction of disability
progression.

In the literature, several prognostic models for multiple sclerosis
already exist, but none of them adopt deep learning (DL) models to
classify patients based on disability progression. Mainly, a machine
learning analysis is performed, consisting of data preprocessing,
extraction of the most relevant features, and subsequent classification
or regression using models such as linear or logistic regression,
support vector machines (SVMs) or Decision Trees [1]. In this
paper, it will be used an innovative Digital Twin (DT) approach,
whose concept was first introduced in 2002 when Michael Grieves
delivered a presentation at the University of Michingan [2]. It was

later brought into the medical field as a potential solution for precision
medicine and was called Health Digital Twin (HDT). The HDT
is a virtual mirror of patients that allow to simulate their state
of health using data-driven analytical algorithms and theory-driven
physical knowledge [3] and GAI has been recognized as a promising
technology which can effectively assist the implementation of HDT.

This study aims to predict the progression of patients’ motor
disability based on MEPs by employing a DT approach that utilizes
Deep Learning (DL) models, which serve as a support mechanism
for the HDT implementation, encompassing data generation, model
training, and classification processes.

II. MATERIALS AND METHODS

The publicly available longitudinal dataset [4] covers six years
of follow-up and is characterized by full measurements timeseries
(MEPs) recorded from the abductor pollicis brevis (APB) and the
abductor hallucis (AH) muscles bilaterally. The dataset contains the
Expanded Disability Status Scale (EDSS) measurements, which asses
the level of disability of MS patients starting from 0 (absence of
disability) to 10 (total disability). These values will be adopted for
the determination of the two classes of patients upon an established
condition. To predict the motor disability progression in patients, the
change of EDSS values after two years from an initial baseline date
T0 is considered and only MEPs recorded during visits which are
within an interval of ± 2 years from T0 are included.

A. Analysis pipeline for Motor Evoked Potentials

MEPs were recorded from the APB and AH muscles bilaterally.
Magnetic stimuli were delivered to the hand and leg areas of the
motor cortex with a Magstim 2002 device (The Magstim Company
Ltd., Whitland, UK). The signal is recorded for 100 milliseconds,
starting from the moment of stimulation in the brain. The dataset
contains measurements from two separate machines which have the
same hardware but different acquisition rate (20 kHz for machine
A, 19.2 kHz for machine B, respectively). For each limb, each
excitation strength results in one timeseries and for each patient four
distinct tests have been considered (APB-R, APB-L, AH-R, AH-L).
An example of all the MEPs for a single visit is shown in Fig. 1.
Only measurements acquired in visits 1 year before or after T0 (date
of the first EDSS of each patient) have been considered:

T0 − 1 year ⩽ V isitDate ⩽ T0 + 1 year

The signals have been resampled to 1920 points and MEPs with more
than 100 ms of duration have been deleted. The ”facilitated measures”
in which the patient was asked to flex the limb to obtain a good
measurement, have not been included. Finally, for each patient, only
the three measurement with the maximum peak-to-peak amplitude for
each type of test have been chosen. In the end, it has been created a
dataset characterized by 333 patients, 982 visits and 11784 measures.



Fig. 1. Example of the MEP series recorded at a single visit. APB indicates
that the signal is recorded from hands (R=Right and L=Left) while AH
indicates the signal is recorded from feet.

B. ViT model for classification

Classification consists in the prediction of patients’ motor disability
progression after 2 years from the baseline date T0. It has been
considered the standard definition of disability progression, where
the patient has progressed if (EDSST 1 − EDSST 0 ⩾ 1) for
(EDSST 0 ⩽ 5.5) or if (EDSST 1 − EDSST 0 ⩾ 0.5) for
(EDSST 0 > 5.5), where T1 is the time of the EDSS measurement
closest to the 2 year mark, between 1.5 and 3 years. In this way, the
input is a collection of timeseries; the output is the presence (class
Positive) or absence (class Negative) of disability progression. To
classify input timeseries, we employed the Vision Transformer (ViT),
a Generative Artificial Intelligence (GAI) model suited for sequence
classification tasks. The dataset has been split into training (80 %) and
test set (20 %) and k-fold cross validation has been applied (k = 5).
For each fold, the model was trained over 200 epochs, and the Area
Under the Curve (AUC) was computed for the train, validation and
test set at each epoch. The highest validation AUC value across the
200 epochs was identified, and the corresponding model parameters
were retained and used for the final performance metrics, i.e. AUC,
accuracy, precision, recall, and F1-score, computed for each fold. The
results from all folds were then averaged to obtain a robust estimate
of the model’s predictive capabilities and generalizability.

C. CI-VAE for data augmentation

The dataset provided for this study is characterized by a scarcity of
data and class imbalance, in fact the Negative class is overestimated
respect to the Positive class. These limitations can lead models
to overfitting, expecially with complex DL architectures, and to
poor performance on the minority class. To overcome these two
issues, a Variational Autoencoder (VAE) with an additive classifier
layer based on a Multilayer Perceptron (MLP) architecture has been
implemented and called Class-Informed VAE (CI-VAE). The model
is characterized by an encoder which transforms input data to a low-
dimensional latent space representation z and a decoder that from z
is able to reconstruct the original signals. In this way, the model is
capable of synthesize new data, as shown in Fig. 2, as digital replica
of the original ones which can be added to the previous dataset.
The MLP layer takes z in input and classifies the input as Positive
or Negative in order to enhance the linear separability between the
two classes. After CI-VAE training, its parameters and weights are
freezed in order to generate new signals starting from those targeted
as Positives. In this way, the dataset input to the ViT is augmented
and balancing between the two classes is achieved.

Fig. 2. Results of CI-VAE reconstruction of MEP signals recorded from
hand (first figure above) and foot (second figure below). The blue signal is
the original MEP; the orange signal is that reconstructed from CI-VAE.

III. CONCLUSIONS

In this paper, we emphasized the implementation of GAI-driven
HDT for the construction of a predictive model for motor disability
progression in MS. Specifically, GAI can generate diverse and highly
realistic synthetic data and automatically extract the most relevant
features for classification purposes. The aim was to refine the
monitoring of the disease, improving the management of patients.
These preliminary findings may have the potential application in the
development of automated control systems designed for personalized
therapeutic interventions and adaptable disease management in MS.
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Water pollution and global warming are two critical issues plaguing our so-
ciety. Microalgae offers a compelling solution [1] that can tackle both problems
simultaneously. They consume nitrogen, phosphorus, and other harmful sub-
stances, as well as CO2 through their photosynthetic nature. Microalgae are
cultivated in various bioreactors, such as tubular, raceway, and thin layer. The
raceway bioreactor has proven to be the most suitable due to its higher biomass
production rate, which leads to a greater volume of purified water and consumed
CO2.

Fig. 1: Raceway bioreactor at Universidad de Almeria, Almeria

However, the system’s nonlinear behavior and sensitivity to atmospheric con-
ditions influence its effectiveness. To ensure this promising solution is efficient, it
must be maintained in optimal operating conditions. Therefore, advanced control
approaches are necessary to keep the system at its optimum operating point. In
the literature, examples of control solutions exist for this problem mainly based
on Proportional Integrative Derivative (PID) controllers [2,3,4].

We have chosen a model-based control algorithm to guarantee the process’s
optimality. By studying and developing accurate models of the system, we aim
to precisely control and enhance its performance. At a low level, the raceway re-
actor is modeled as a MIMO system, as shown in Figure 2, where the controlled
variables are the dissolved oxygen and pH. The control variables are CO2 injec-
tion and air injection in the medium. CO2 injection decreases the pH level which
is increased by the microalgae photosynthetic process and provides nutrients to
them, air injection reduces the dissolved oxygen in the medium increased by the
microalgae photosynthetic process. Solar irradiance and medium temperature
are measured disturbances.
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Currently, we are developing a linear Model Predictive Control for the low-
level pH control. We have designed the inputs for the MIMO system in such
a way that the inputs are uncorrelated and respect the concept of persistent
excitation. The reactor presents an integrator-like behavior for this reason a
conventional open-loop identification framework is not feasible, therefore we have
developed a closed-loop identification method, which preserves the uncorrelation
characteristic of the input signals. We are identifying the bioreactor as a block-
oriented model, such as the Wiener or Hammerstein models, taking advantage
of the fact that the dynamic of the system in a day is almost linear.

Fig. 2: Raceway reactor model
The ultimate goal of our project is to develop a comprehensive framework

that not only enhances the efficiency of the microalgae process but also makes
it cost-effective and sustainable thanks to the economic value of biomass. By
optimizing the microalgae growth rate, we can maximize their water-purifying
and CO2-consuming capabilities. The biomass’s economic value is because it can
be used as fertilizer, biofuel, and more.
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I. EXTENDED ABSTRACT

Nowadays Electric Vehicles (EVs) have become much more
popular thanks to the advancement in battery technology and
the government’s efforts to reduce carbon emissions. Due to
the growing number of EVs and the limited charging resources
like available electric power and chargers, it is essential to
manage EVs charging demand from the grid. A demand
response program is an effective method for demand-side
management [1], whereby the charging cost of EVs decreases,
and the grid reliability increases. For the demand-side man-
agement, authors in [2] have assumed that the electricity price
depends on the amount and time of consumption. Then, the
demand can be shifted from the on-peak hours to the off-peak.
To model the charging control system, the study of multi-agent
systems has attracted considerable attention. Authors in [1]–[6]
have considered EVs as agents and designed a control method
for the charging management system. The key assumption
in these references is that there are enough chargers in one
charging station. Therefore the sole problem is to schedule
EVs. In case there are a limited number of chargers in one
station and the number of EVs requesting the charge is more
than the chargers installed in one station, there is a resource
allocation problem that specifies whether one EV should be
connected or not and how much charge it should receive in
each time. For this problem, some binary variables should be
defined to determine the status of connection of each EV to the
chargers at each time. Authors in [6] have proposed a mixed-
integer game formulation for the charging schedule of EVs.
The proposed price scheme in [6] incorporates the Time-Of-
Use(TOU) tariff and the total energy demand. For this price
function, when the total number of EVs is more than the
number of chargers, the price might not increase when the
total number or request of EVs increases. However, in real-
world booking systems, by increasing the request and the fixed
limited resources, the price should increase. To this aim, in this
paper, a new pricing policy has been designed that models the
charging request of all EVs, including satisfied or dissatisfied
EVs. In this paper, we have considered EVs as cooperative
agents in the multi-agent system that they cooperatively aim

The activities have been partially supported by the research project PSC
Campania–Piano B, H-MOBILITY, CUP B32C18000250007.

to minimize the charging cost, battery degradation cost, and
the cost of deviation from their desired state of charge. The
charging cost depends on the new proposed charging price.
Additionally, we have analyzed the effect of the new pricing
scheme on peak shaving and the EVs charging satisfaction.
The problem formulation has been described as follows. Let
N := {1, ..., N} be a finite set of EVs and t ∈ T ⊂ N
be a generic discrete time-step over the finite time horizon
T = {1, ..., T}. For each EV i ∈ N , the State Of Charge
(SOC) of the battery at the time t is denoted by xi(t) ∈ [0, 1],
where xi(t) = 1 occurs when the battery is fully charged
and xi(t) = 0 when the battery is completely discharged. The
dynamic of SOC is defined as follows

xi(t+ 1) = xi(t) +
µi

νi
ui(t), (1)

where xi(0) = x0
i ∈ [0, 1] is initial SOC, where µi ≥ 0 is the

battery efficiency of the i-th EV, νi > 0 is its battery capacity
and ui(t) ∈ R+ is the amount of electric power transferred
to the i-th EV at time t. We assume that the i-th EV aims
to reach the final SOC xi(T ) = xF

i . we also consider the
binary variable δi(t) ∈ {0, 1}, i ∈ N , where δi(t) = 1 if at
time t the i-th EV is connected to a charger and δi(t) = 0
otherwise. When the EV is plugged in, the amount of power
it receives can be positive. This condition is represented using
the following logical constraints:

δi(t) = 0 =⇒ ui(t) = 0, , δi(t) = 1 =⇒ ui(t) ∈ [u, u], (2)

where u, u ∈ R+, and u > u ≥ 0. Another condition is that
when the i-th EV is connected to the charging station then it
remains connected for a time horizon of length ℓi ∈ N, i ∈ N :

[δi(t− 1) = 0] ∧ [δi(t) = 1] =⇒ δi(t+ ℓ) = 1. (3)

Also, a single charging station with c̄ chargers is considered:∑
i∈N

δi(t) ≤ c. (4)

The total energy demand from the grid can be expressed as

Ed(t) = d(t) +
∑
i∈N

ui(t), (5)



where d(t) ∈ R+ is the total inelastic non-EVs load. Due to
the limitation of the grid capacity, we assume

0 ≤ Ed(t) ≤ Ē , (6)

where Ē is the maximum capacity of the grid. The cooperative
charging schedule where all EVs aim to minimize a total cost
is formulated as

min
u,δ,x

N∑
i=1

Ji(ui, u−i, xi, x−i)

s.t. (1) − (4), (6) ∀i ∈ N .

(7)

The cost function Ji is given as

Ji(ui, u−i, xi, x−i) = J sat
i +

∑
t∈T

(
Jbuy
i (t) + Jdeg

i (t)
)
, (8)

where u−i = col((uj)j∈N\{i}) and x−i = col((xj)j∈N\{i}),
i ∈ N . J sat

i is the cost of deviation from the desired value xF
i

and defined as

J sat
i = θi(xi(T )− xF

i )
2, (9)

where θi ∈ R+ shows the monetary value of the deviation of
the final SOC from the desired SOC xF

i . The term Jbuy
i (t)

in (8) is the cost of purchasing electricity and is defined as

Jbuy
i (t) = p(t)ui(t), (10)

where the price per unitary energy p(t) ∈ R+ is defined as

p(t) = h(t) + q1r(t) + q2
∑
i∈N

ηi(t)(x
F
i − x0

i ), (11)

where q1 is set based on the grid policy and h(t) is the TOU
pricing tariff. In this paper, we have defined q2 to model
the total EV demand in the price function. The variable r(t)
represents the effects of the total satisfied demand [3] and it
can be defined as follows

r(t) =
1

γ(c̄, Ē)
Ed(t) =

1

γ(c̄, Ē)

(
d(t) +

∑
i∈N

ui(t)

)
. (12)

Jdeg
i (t) is the battery degradation cost and defined as

Jdeg
i (t) = ai(ui(t))

2 + biui(t), (13)

where ai ∈ R+ and bi ∈ R+ are parameters of the battery
degradation cost. Figures 1-3 show the results of the research.
Figure 1 shows the effects of changing q2 on the dissatisfaction
of all EVs. By analyzing Fig. 1, we have chosen the appro-
priate limitation of the parameter q2 ∈ [0, 0.1] in order that
the dissatisfaction of EVs does not increase a lot. In Fig. 2,
we have shown the sensitivity of the proposed price function
p(t) to the selected limitation for q2 obtained from analyzing
Fig. 1. Figure 3 shows non-EV load (blue curve) and total EV
demand (red curve). As shown, by employing the proposed
system, EVs are encouraged to be charged when the non-EV
load is less. REFERENCES
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Climate change is irreversibly having an increasing impact on the environment, people, and the econ-
omy worldwide [1]. Although not decisive without the synergistic actions of stakeholders and policymakers,
the contribution of each individual in counteracting its effects is crucial, as everyday actions can shape a
more resilient and sustainable future.

In [2] we propose a georeferenced agent-based model (ABM) for the Italian city of Siena whose agents
are people who live in the historic center of the city and whose goal is to promote sustainable behaviors
among them. The ABM is being developed using Netlogo and starting from a survey administered to
324 citizens, representing a sample of the considered population and consisting of the model agents. The
answers concern the agents’ georeferentiation and individual climate awareness evaluated in terms of their
propensity to be cooperative toward sustainable actions, such as for example waste recycling, cleaning
public spaces, and so on. This produces five behavioral traits, which correspond to five different types
of evolutionary games, including Prisoner’s Dilemma (PD), Stag-Hunt (SH), Hawk-Dove (HD) and fixed-
strategy games, cooperative (A) or defective (D), and implying that the ABM’s human decision-making
(DM) is modeled using game theory [3]. Each agent, regardless of its behavioral propensity, chooses at
each iteration between two fixed strategies: cooperation (sustainable actions) and defection (the opposite).

We obtain initial findings by analyzing the survey data set, which is then used to adjust the ABM, with
respect to the analysis of climate awareness and the sample’s composition. Our findings show significant
and surprising differences across age, gender and educational level groups, discovering for instance that
younger individuals are not the most aware. Concerning the sample composition, we find, as expected, a
prevalence of PD players, followed by SH, HD, fixed cooperators, and finally full defectors.

Social interaction is a key element in human DM, as decisions depend on individual propensities
and the choices of others [4]. In our work, this is considered by locating the ABM on a graph whose
nodes are the 324 agents of the sample and whose connections represent their interactions. The ABM
is initially developed to a theoretical case, called the Basic Model (BM), where the 324 agents have all
the features obtained from the survey except for the geographical location on the map of Siena and they
are positioned to form a 2-dimensional lattice, thus representing a city with a perfectly regular urban
structure. Subsequently, the ABM is fully adapted to our case study, the so-called Siena model (SM),
where the 324 agents are also georeferenced on the city map (Fig.1). In both model versions, we explore
two graph scenarios: one with links representing geographical proximity connections, and another with a
small-world (SW) topology, embedding agents’ social networks of friendships into the DM.

The simulations of the ABM allow us to evaluate how cooperation among citizens towards sustain-
ability spread in the Italian city of Siena. We find different levels of cooperation depending on the model
version and the network topology, detecting significant variations not only between the geographical and
SW networks but also between the Basic and Siena models. Notably, the geographical network appears
less cooperative than the others, thus opening interesting questions on the effects of the urban structures
of cities and their modeling.

A new, more extensive and structured survey is presently being distributed in a project supported by
the municipal administration to extend the ABM to the entire population (approximately 10000 agents)
living in Siena, including also temporary residents such as students, tourists, and visitors [5]. The ABM
created with this new data collection will simulate the behavior of the entire population, not only to a
sample, although representative, as in the previous case. The resulting agent-based model will be used
to study measures to foster sustainable behaviors at the individual level, contributing to fighting climate



Figure 1: Siena Model (SM) visualization in the Netlogo world display at initial time t = 0. The white
lines represent Siena’s road network, while the black ones are the links of the model’s graph. The five
different games A, D, PD, SH and HD are represented by labels on the nodes, which are the 324 agents
georeferenced on the Siena map.

change, developing and personalizing intervention strategies, and adapting sustainable policies based on
the specific needs of citizens. The new data collection will also allow for the validation of the previous
model.

Furthermore, the ABM will be placed in the context of distributed control by incorporating previously
trained special agents acting as pinner nodes into the network [6]. Preliminary results show that these
types of agents are the SH players rather than full cooperators, while the nodes to be acted upon, called
pinned nodes, are PD players.
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(Submitted to EPJ B Topical Issue: Recent Advances in Complex Systems).
[3] Adami C. et al.: Evolutionary game theory using agent-based methods. Physics of life reviews 19, 1–26 (2016)
[4] Bianchi F. et al.: Agent-based models in sociology. Wiley Interdisciplinary Reviews: Computational Statistics
7(4), 284–306 (2015)
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[6] Ancona C. et al.: Influencing opinions in a nonlinear pinning control model. IEEE Control Systems Letters, vol.
7, pp. 1945-1950 (2023).
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Abstract— The ability to achieve precise and smooth trajectory
tracking is crucial for ensuring the successful execution of
various tasks involving robotic manipulators. State-of-the-art
techniques require accurate mathematical models of the robot
dynamics, and robustness to model uncertainties is achieved
by relying on precise bounds on the model mismatch. In this
paper, we propose a novel adaptive robust feedback linearization
scheme able to compensate for model uncertainties without
any a-priori knowledge on them, and we provide a theoretical
proof of convergence under mild assumptions. We evaluate the
method on a simulated RR robot. First, we consider a nominal
model with known model mismatch, which allows us to compare
our strategy with state-of-the-art uncertainty-aware methods.
Second, we implement the proposed control law in combination
with a learned model, for which uncertainty bounds are not
available. Results show that our method leads to performance
comparable to uncertainty-aware methods while requiring less
prior knowledge.

I. INTRODUCTION

In modern industries, the demand for industrial robots spans
various applications such as welding, spraying, assembly,
handling, transportation, and precise manufacturing. As the
complexity of tasks increases, the requirements for robotic
controllers escalate. This paper addresses the trajectory
tracking control problem for industrial robots, focusing on
designing controllers capable of driving a robot to track
a desired trajectory within a pre-assigned tolerance. Tradi-
tional approaches include PID control, feedback linearization,
adaptive control, robust control, sliding mode control, neural
network control, fuzzy control, iterative learning control, and
reinforcement learning.

We focus on feedback linearization control, known for
its remarkable performance with accurate system models.
This method employs a cascade of loops: an outer loop
eliminates the system’s nonlinearities, and an inner loop
stabilizes the dynamics using feedforward and PD control.
Challenges arise with model mismatches, where traditional
robust control methods require a priori uncertainty bounds.

II. PROBLEM FORMULATION

In this paper, we focus on a class of Lagrangian systems
whose dynamics can be described by

M(q(t))q̈(t) + C(q(t), q̇(t))q̇(t) + g(q(t)) = τ(t), (1)

where
• q = [q1, . . . , qN ]T denote the N -th dimensional vector of

generalized coordinates; accordingly, q̇ = [q̇1, . . . , q̇N ]T

and q̈ = [q̈1, . . . , q̈N ]T are the vectors of the generalized
velocities and accelerations, respectively;

• M(q(t)) ∈ RN×N represents the inertia matrix which
is a definite positive matrix for any q(t);

• C(q(t), q̇(t)) ∈ RN×N depends on the Coriolis and
centrifugal forces;

• g(q(t)) ∈ RN describes the gravitational effects;
• τ = [τ1, . . . , τN ]T represents the vector of the general-

ized torques applied to system.
We consider the problem of making the system positions,
velocities and accelerations (q(t), q̇(t), q̈(t)) to track a desired
trajectory

(
qd(t), q̇d(t), q̈d(t)

)
.

Traditional control architectures assume perfect model
knowledge. In practice, this assumption is rarely met, leading
to unavoidable model uncertainty. Robust control strategies
typically include a compensating term w, designed via
the Lyapunov direct method, requiring knowledge of the
uncertainty bounds.

III. ADAPTIVE ROBUST FEEDBACK LINEARIZATION
CONTROL

The method we propose is a robust version of the feedback
linearization strategy [1] of the form

τ = M̂(q)

(
q̈d +KP e+KD ė+ ρ

z

∥z∥

)
+ n̂(q, q̇), (2)

with z = DTQξ, and ρ is updated by:

ρ̇ =

{
kρ if V̇ ≥ 0 and ∥z∥ ≥ ϵ

0 if otherwise
(3)

where kρ > 0 adjusts the increase rate of ρ. This update law
ensures compensation for model uncertainties by increasing
ρ when the Lyapunov function’s derivative is non-negative[2].
The results presented are derived under the assumptions
outlined in [2], accompanied with the corresponding proofs.

IV. NUMERICAL RESULTS

We evaluate the Adaptive Robust Feedback Linearization
(ARFBL) on a simulated 2-DOF RR planar manipulator. We
designed a trajectory tracking experiment, where the reference
trajectory of the i-th joint, is defined by the sum of random
sinusoidal trajectories.

In all experiments, the controller parameters in (2) and (3)
are set with proportional and derivative gains as diagonal
matrices defined as KP = kp I and KD = kd I , with I
being the identity matrix, kp = 100, and kd = 2

√
kp. The

parameter ϵ was set to 0.5, resulting in almost no chattering.
The experiments used Kρ = 1000 for the first experiment
and Kρ = 500 for the second experiment. In both numerical
examples we compare the performance of the ARBFL only
for joint 2, but similar results also hold for joint 1.
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A. First Experiment: Perturbed dynamics

In Fig. 1, we compare ARFBL with Robust Feedback
Linearization (RFBL), showing ARFBL achieves similar
tracking performance without requiring prior uncertainty
knowledge, while in Fig. 3 we plot the evolution of ρ. Results
show that the ARFBL scheme converges to the same error
dynamics of the standard RBFL, despite being independent
of a priori knowledge concerning the uncertainty bounds.

B. Second Experiment: black-box dynamics

In this experiment, we considered a black-box dynamics
model based on GPR, for which it is not possible to derive
the uncertainty bounds.

In Fig. (2), ARFBL significantly outperforms standard
Feedback Linearization (FBL), maintaining lower tracking
errors and smoother torque profiles. Additionally, in Fig. 4,
we report the evolution of ρ. We observe that ρ increases in
all input regions where the GP dynamics fail to cancel the

non-linearity properly and stabilizes at a constant value upon
the error’s entrance into the boundary region.
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V. CONCLUSIONS

We introduce a novel adaptive robust feedback linearization
scheme compensating for model uncertainties without prior
bounds. Theoretical analysis and numerical experiments
validate the proposed method’s effectiveness in achieving
robust trajectory tracking. Future work will extend the update
law to allow ρ to decrease, aiming for dynamics closer to
standard RFBL. The ARFBL strategy offers a promising
approach for robust control in uncertain scenarios, enabling
reliable trajectory tracking for complex robotic systems..
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I. INTRODUCTION

At the beginning of 2024, the U.S. Food & Drug Administration
launched the Project Optimus [1] with the aim to improve the
dose-optimization process, minimize toxicity, and improve benefits
for patients in oncology drug development. One challenge is using
mechanistic modeling approaches followed by quantitative analysis
to provide clinical teams with safety and efficacy indicators of a
treatment plan according to the specific patient conditions.

Oncology clinical trials have very strict eligibility criteria, that,
although necessary to establish the intervention efficacy, permit to
adequately represent only a subsample of the broader actual patient
population. Moreover, elderly patients or those with a dismal progno-
sis usually do not meet the inclusion criteria. These aspects can limit
the generalizability of the results in the real world, where an increased
rate of adverse events is observed due to the higher variability of
conditions in patients receiving treatment. As a consequence, the
interruption of therapy is mandatory and patients experience both
shorter survival and a poorer quality of life.

Here, we describe a quantitative method that integrates real-
world data into mathematical disease modeling to address the above-
mentioned issues. We have developed a simulation model that man-
ages to reproduce the disease outcomes observed in a large study
cohort of patients with gastric cancer, thus being able to support the
decision-making of oncologists in the scheduling of treatment.

The tumor is a biological tissue with abnormal increased prolif-
erative signaling and vigorous metabolism, in which angiogenesis
assumes a catalytic role, since the tumor’s ability to induce or access
vasculature promotes the enlargement and cancerization of both the
surrounding and distal tissues. Here, we utilize a mechanistic model
to couple the dynamics of vessel networks, which are made of both
mature and newly-formed vessels, with the tumor core development,
in order to make predictive simulations and gain insights into the
impact of drug scheduling.

In addition, compared with monotherapy, the combination of anti-
tumor drugs enhances the therapeutic efficacy since they target
synergistically such deregulated signaling pathways. More specif-
ically, the order of administration of combined drugs should be
optimized such that the action of one drug promotes the effectiveness
of the subsequent therapies, by making the tumor tissue and its
microenvironment more susceptible to the action of other drugs. In
the last twenty years, evidence showed that anti-angiogenic therapies,
by pursuing a vessel normalization process, can increase the efficacy
of conventional therapies, i.e., cytotoxic drugs, if both are carefully
scheduled [2].

II. MATERIALS AND METHODS

We used data from a large study, named KCSG-ST19-16 [3], that
was conducted on a real-world cohort of 1021 patients suffering
from gastric cancer. Data included baseline patient and tumor char-
acteristics, treatment data, and tumor response. Among these, the

Eastern Cooperative Oncology Group (ECOG) performance status is
included, with integers ranging from 0, meaning a good health status,
and 5, corresponding to death. This scoring system evaluates how a
patient’s disease affects their daily activities and is crucial for doctors
in determining the appropriate treatment.

These patients received a second-line combination therapy con-
sisting in Ramucirumab (‘R’), which is an anti-angiogenic mono-
clonal antibody plus Paclitaxel (‘P’), which is a chemotherapeutic
agent with cytotoxic effect. The standard administration schedule
[‘PR’, ‘P’, ‘PR’] was implemented, as provided by the RAINBOW
clinical trial [4], in which the three infusions were spaced 7 days
apart with a washout period of 14 days before the second cycle. The
response assessment occurred after three treatment cycles through a
radiological evaluation of the disease burden. Tumor response was
assessed by investigators using the Response Evaluation Criteria in
Solid Tumors (version 1.1), thus reporting cases of complete response
(CR), progressive disease (PD), partial response (PR), and stable
disease (SD). The RAINBOW trial involved all patients with an
ECOG score of 0 or 1, while the KCSG-ST19-16 contained 97
patients (9.2%) with a score of 2, 3, or 4, thus adding much variability
in the patients’ conditions. Patients with low ECOG have better
prognosis and experience more frequently higher responses (i.e. CR,
PR, SD), than those with high ECOG values, as shown in Figure 1a).

A. Mathematical model

The system of ordinary differential equations (ODEs) derives from
the model proposed by Benzekry et al. [5]. The Eq.(1.a) describes the
total tumor burden x(t) over time as a function of the proliferative
rate µC and the carrying capacity s(t), which corresponds to the
mature fraction of the vascular network. The second term of Eq.
(1.a) describes the tumor reaction to cytotoxic drug concentration
C(t); the delayed effect of the drug with respect to the tumor cells
exposure is taken into account with a transit compartment model
that describes the cells undergoing progressive degrees of damage by
passing through n = 4 different stages before death with Ktransit

rate. The Eq. (1.b) describes the dynamic of the carrying capacity
s(t). This is obtained from the balance between the maturation λ of
unstable vessels u(t) and the natural death τ of stable vessels s(t).
The Eq. (1.c) models the pro-angiogenic effect γ on unstable vessels
u(t) provided by the tumor x(t) and by subtracting the fraction
of vessels u(t) that become stable with a rate λ. This stimulatory
effect is exerted by the fraction of active tumor cells x1(t). On
the other hand, the tumor slightly inhibits new vessels formation
to elude uncontrolled tumor growth; this was reflected in the term
−δx(t)

2
3 s(t) in the original Benzekry model. We substituted it with

the auxiliary equation (2), weighting the inhibitory effects on the
residual life of tumor cells. The second term in Eq. (1.c) represents
the effect of anti-angiogenic drug concentration A(t), with q(t)
measuring the quality of vascolature and hence the distribution of
the drugs to the target tissue, according to auxiliary equation (3).



Fig. 1. Distribution of virtual patients outcomes in the four response classes (i.e., CR: Complete Response, PD: Progressive Disease, PR: Partial Response,
SD: Stable Disease) with respect to ECOG performance status (a). Distribution of µC × γ among therapy response categories (b). SD vs all classification by
ROC analysis (c).

The effective concentrations C(t) and A(t) of drugs follow distinct
pharmacokinetic laws, while ka and kx are scale factors of drug
effects.

ẋt = µCx(t)

(
1− x(t)

s(t)

)
− kxq(t)C(t)x(t)

ṡt = λu(t)− τs(t)

u̇t = −λu(t) + γx(t)− δI(t)s(t)− kaq(t)s(t)A(t)u(t)

(1.a)

(1.b)

(1.c)

I(t) = x(t)− 0.65x1(t)− 0.4x2(t)− 0.1x3(t)− 0.05x4(t) (2)

q(t) =
s(t)

s(t) + u(t)
(3)

The tumor burden x(t) tends to the carrying capacity time-
dependent variable, s(t), which corresponds to the dynamics of the
stable vessels, since these enable tumor nourishment.

B. Parameter fitting procedure

The procedure to fit parameters consists of two steps that were
built using the SimBiology toolbox of MATLAB (Mathworks, Natick,
MA, USA). Firstly, global sensitivity analysis has measured both the
first- and total-order Sobol indices and has revealed how much both
single and joint variations of the model parameters could explain
the variance of the three state variables. Secondly, the optimal
upper and lower bounds for parameters µC , γ, τ, λ,Ktransit are
iteratively found by applying the Kolmogorov-Smirnov test. Hence,
the multiparametric global sensitivity analysis is employed to find the
parameter ranges that could reproduce the four treatment responses at
the simulation time with the same distribution as the KCSG-ST19-16
study. In this work, the distinction of patients into low-ECOG class,
(ECOG ≤ 1), and high-ECOG class, (ECOG > 1), was used to set
up the simulation initial conditions, corresponding to different regions
of the mathematical model. Patients with unfavorable conditions
are represented within the high-ECOG class, where s(0) ≥ x(0):
in this case, the tumor growth is sustained in its growth by a
large carrying capacity and doctors would choose a reduced dose to
limit the toxic side effects. Conversely, patients with more favorable
conditions, which are represented within the low-ECOG class, have
an initial condition where s(0) ≤ x(0). Disease trajectories were
analyzed under the application of the standard therapy schedule, that
administers cytotoxic and anti-angiogenic drugs, which are defined
as C(t) and A(t) in Eq. (1.a) and Eq. (1.c), respectively. A reduced
dosage to a fraction of patients belonging to the high-ECOG class is
applied to comply with the KCSG-ST19-16 cases history.

III. RESULTS AND DISCUSSION

The calibration phase identified distinct plausible ranges of values
for each of the model parameters describing the pathobiology of
the disease, that are: µC , λ, γ, τ , Ktransit. Different simulations
were run over those ranges to study how these parameters affect
the distribution of outcomes, i.e. the evolution of the state variables
x(t), s(t), u(t).

Notably, the two classes of patients describe different culprits of
disease. For instance, the µc parameter is a proxy measures of the
intrinsic ability of the tumor to escape the programmed death, whilst
the γ parameter measures the stem of new vessels induced by tumor
cells. We found that their interaction, µc × γ, is an interpretable
biomarker. The higher median of the distribution (i.e. more aggressive
tumor) suggests lower responses, as shown in Figure 1b. Moreover,
ROC analysis in Figure 1c reveals unique optimal cut-off values for
µc×γ, as determined by the Youden’s J statistics. An overall accuracy
of 0.9421, 0.7393, 0.8762, and 0.8692 is reached in discriminating the
SD, PR, CR, and PD response class in a one versus all classification,
respectively. Future works will be done towards the exploration of
new scheduling strategies for administering C(t) and A(t) with the
aim to gather efficacy indicators of such alternative treatment plans
on different subgroups of patients.
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This paper deals with the theoretical development and experimental appli-
cation of a new version of Active Disturbance Rejection Control (ADRC) to
Induction Motor (IM) drives. The ADRC method is a robust adaptive exten-
sion of the input-output feedback linearization control. It performs the exact
linearization of the IM model by a suitable nonlinear state transformation based
on the online estimation of the corrective term by the so-called Extended State
Observers (ESO). Consequently, any unmodeled dynamics or uncertainty in the
parameters are properly addressed. It should be remarked, however, that param-
eter variations and errors in estimating the total disturbance cannot be included
in the endogenous disturbance and cannot be estimated by the ESO, so these
problems may deteriorate the performance of the ADRC method. In this pa-
per, a new control structure is proposed where, in place of an ESO, a high-gain
Unknown Input Observer (UIO) is implemented with a driving term that is a
function of the tracking error. This approach permits achieving total robustness,
even against exogenous disturbances coming from the ESO input. In more detail,
in the classical ADRC, there is a cascade between the controller and the ESO,
and the controller does not influence the ESO. In the proposed approach, there
is an interconnection between the observer and the controller due to the driving
term, so the observer can be considered embedded in the controller. In this way,
all uncertainties associated with inverter nonlinearities, delays, and parameter
variation of the input gain are automatically eliminated. To derive the proposed
robust control law, the first step is to obtain the flux model and speed in canon-
ical form. Since the model that we obtain is observable and reachable, to obtain
steady-state null errors, a state feedback control law based on the assignment
of the eigenvalues can be derived; however, this technique does not allow us to
obtain steady-state null errors. So, the best way to achieve perfect tracking of
a constant reference is to add a third variable to the model. So, unlike ADRC,
where a classical ESO sourced by the input is used, a high-gain UIO is consid-
ered, with a driving term that is a function of the tracking error. A test setup
has been suitably built to validate the proposed control technique. The machine
under test is a 2.2kW IM SEIMEC model HF 100LA 4 B5 with an incremental
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encoder. The employed test setup consists of a three-phase 2.2 kW IM, a fre-
quency converter that consists of a three-phase diode rectifier and a 7.5 kV A,
three-phase VSI, and a dSPACE card (DS1103) with a PowerPC 604e at 400MHz
and a floating-point DSP TMS320F240. The proposed innovative version of the
ADRC has been experimentally tested on the test set-up described before. Two
kinds of tests have been performed. The first test is a transient response at no
load, while the second test is a load rejection test at a constant speed.
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Fig. 1: Transient response at no load and constant flux - Experimental results.
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Fig. 2: Load rejection test at 50rad/s and constant flux - Experimental results.

All the above figures show that both ADRC and FOC work properly, per-
mitting the speed and rotor flux to track their references. From Fig.s 1 we can
observe that isx is controlled to a constant value, permitting the rotor flux to
be controlled to the constant rated value of 0.8 Wb. While isy shows a step-like
waveform, with peaks occurring at each speed reference variation. The rotor flux
and electromagnetic torque waveform exhibit the same shape of the correspond-
ing isx, isy. As for the load rejection test, figures 2 show that both the proposed
ADRC and the FOC exhibit good load rejection capabilities, with the electro-
magnetic torque quickly tracking the load one, thus permitting a fast recovery
of the measured speed to its reference.
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Abstract— Ensuring secure spacing between vehicles is vital
for road safety, efficient traffic flow, and system stability in
autonomous driving. While traditional cooperative platooning
approach, relying on centralized coordination exploiting wire-
less network, faces practical implementation challenges due
to communication constraints and diverse driving behaviors,
this work introduces a scalable non-cooperative multi-agent
platooning strategy based on Deep Reinforcement Learning,
leveraging on decentralized decision-making principles.

I. MOTIVATIONS AND INTRODUCTION

A wide number of studies have tackled control issues
of multi–agent autonomous vehicles. Standard approaches
involve linear consensus control [1], distributed robust con-
trol [2], sliding–mode control [3], and model predictive
control [4]. This work contributes by implementing a non-
cooperative control framework for autonomous vehicle pla-
tooning relying on inter-vehicle sensing only. The agents’
aim is to adjust their velocities dynamically to ensure safe
following distances and adapt to surrounding vehicle behav-
ior, without the possibility of exchanging information over a
wireless network.

II. MATHEMATICAL MODEL

The system scenario consists of a set of N AVs following a
human–driven vehicle (HDV), which is considered to be the
leader of the platoon. Each vehicle cannot exchange informa-
tion with the other ones, but it can rely on a distance sensor
mounted on the front bumper, which allows to measure how
far the next vehicle is.

Dynamical models of a single AV are usually split into
longitudinal dynamics, bounce and pitch dynamics and lat-
eral, yaw and roll dynamics. [5]. This work focuses on the
longitudinal dynamics, which is parallel to the ground and
oriented along the direction of motion. Said dynamics is
inherently nonlinear, and in literature it is usually linearized
for tractable issues. In this work we use a fully nonlinear
second–order model to describe the longitudinal dynamics
of the AV, resulting from considering all the forces acting
on the vehicles modeled as a point-mass.

Consider a single AV. Let x = [x1 x2]
T = [p v]T ∈ R2

be the state of the dynamical system, corresponding to its
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position and velocity. The resulting dynamics is described
via the following equations:ẋ1 = x2

ẋ2 =
1

m

(
FT − FAV − FG − FDRAG

)
, (1)

where FT is the longitudinal thrust, FAV = µv

Rw
mg cosα the

rolling friction, FG = mg sinα the gravity acting on a slope,
and FDRAG = 1

2ρairCdAv(vw+x2)
2 is the aerodynamic drag.

In particular, g is the gravitational acceleration, α is the slope
of the surface, ρair the air density, vw the speed of the wind,
µv the rolling friction coefficient, Rw the wheel radius, m
the mass, Cd the drag coefficient and Av the cross-sectional
area of the vehicle.

Assuming that the control input is the acceleration u =
FT

m
∈ R, (1) can be written as ẋ = f(x) +Bu, in terms of

the vector fields

f(x) =


x2

− µv

Rw
g cos(α)− g sin(α)−

+
1

2m
ρairCdAv(vw + x2)

2

 , B =

[
0
1

]
. (2)

The longitudinal dynamics of the HDV leader is modeled
as a double integrator, with its input ul corresponding
to its acceleration as a noisy sinusoidal wave, mimicking
the typical human behavior in traffic-waves conditions and
defined as ul = (A + Â) sin

(
(ω + ω̂)t

)
, with A, ω its

amplitude and pulse, and Â ∈ N (µÂ, σÂ), ω̂ ∈ N (µω̂, σω̂)
the corresponding noises. The employment of the additive
noises to both its amplitude and pulse try to model human
interventions, such as sudden braking or full throttle events.

The non–coperative AVs’ platoon is controlled with the in-
troduction of a Fully Decentralized Multi–Agent DDPG (FD-
MADDPG) algorithm, exploiting the Decentralized Training
Decentralized Execution paradigm (DTDE). At any given
time instant t, the state space of the i-th AV is given by

Si = ⟨vi(t), dii−1(t)⟩, (3)

where vi(t) ∈ [vmin, vmax] represents its sensed velocity
which is lower and upper bounded, and dii−1(t) ∈ [dmin, dmax]
is the measurement of its distance from the vehicle in front.

The action space of each agent corresponds to the vehicle
acceleration input, which is a saturated one:

Ai = ⟨ui(t)⟩, ui(t) ∈ [umin, umax], (4)
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Fig. 1. Platoon’s position evolution over time during evaluation phase.

where umin corresponds to the maximum deceleration, and
umax to the maximum acceleration.

Given the platooning problem, our proposed approach is
to control the velocity vi(t) of the i-th agent towards a
desired value vid(t), which is computed as a function of its
distance from the vehicle in front dii−1(t), so that the latter
becomes a safe distance. In other words, in accordance to
traffic regulations, we adjust vi(t) to make sure that dii−1(t)
is an adequate stopping distance.

By approximating the i-th agent with a point-mass, vid(t)
results from solving the following second–order equation:

dii−1(t) =
vid(t)

2

|umin|
+ vid(t) tr, (5)

where tr is the AV reaction time, that may be set as a function
of the sensor’s bandwidth, data processing time, and control
actuation bandwidth. The immediate reward ri(t) is shaped
as follows:

ri(t) =


−100, if dii−1(t) < dmin

−
(
vi(t)− vid(t)

)2
, if dmin < dii−1(t) < dmax

−
(
vi(t)− vmax

)2
, otherwise.

(6)

III. SIMULATIONS AND RESULTS

In order to validate the robustness of our proposed ap-
proach, we consider a platoon of five AVs following a HDV.

Starting from its initial state xi
0 = [pi0 vi0]

T at t = 0 [s],
the i-th agent has to adjust its speed vi(t) according to its
measured distance dii−1(t) from the vehicle in front. Having
multiple AVs, at each time step t, they apply simultaneously
the acceleration actions on the environment, observe the
corresponding rewards and next states, and subsequently are
trained in parallel. The episode ends if an agent gets too
close to the vehicle in front, namely dii−1(t) < dmin, or if
the time limit T is reached.

Considering that its initial distance from the vehicle in
front and velocity is smaller than the ones of the others, as
shown in Fig. 1, detailing the evolution of platoon’s position
over time during the evaluation phase.

As time goes by, each agent successfully keeps a safe
distance from the vehicle in front by adjusting its own
velocity, proving to have successfully learned the dynamics
of the agent in front, as well as its own (see Fig. 1). In

Fig. 2. Platoon’s velocity evolution over time.

Fig. 3. Platoon’s acceleration evolution over time.

particular, given the velocity of the leader, the agents are
able to follow their desired speed profile, as shown in Fig. 2
and, in the meantime, steering all the velocities towards a
common value.

Fig. 3 depicts agents’ control effort: note how all but the
first AV, after an initial adjustment, keep a soft acceleration,
whereas the AV following the leader shows several accelera-
tion peaks, since it has to mimic the leader’s velocity profile
in traffic-waves conditions.

IV. CONCLUSIONS

This research activity is focused on a non-cooperative
multi-agent platooning strategy to ensure safe distance keep-
ing between vehicles. Simulations have proven the validity
of the data-driven deep reinforcement learning methodology
in steering vehicles’ velocities towards the desired values.
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Abstract: Agriculture faces new challenges in meeting the demands of
a rapidly expanding global population, the constant reduction of the
labor force, and significant climate changes. The integration of robotics
into agricultural practices presents a promising solution to these critical
issues, potentially enhancing efficiency, productivity, and sustainability
in the sector.
Our research focuses on autonomous navigation in rows of orchards based
on RGB-D data, a process that can be exploited in several more com-
plex tasks such as plant monitoring, weed removal, pesticide application,
precision planting, and automated harvesting [1] [2]. This task is par-
ticularly challenging in perception and control due to the environment’s
variability and irregularity. For this reason, we proposed a local planner
that exploits RGB-D data, achieving a strategy that, up to a minimal
prior path planning, is adaptable to several row-based cultivation struc-
tures. Additionally, compared to global planners, this method is more
robust against unexpected or dynamic obstacles.
The core algorithm employs a hybrid automaton that alternates between
two primary states: in-row navigation and out-row navigation. An addi-
tional state, exit-row, ensures the rover has completely exited the row.
The state transitions are based on a perception routine delineating ac-
cessible and obstructed regions in the rover’s path.
Based on the work by Aghi et al. [3], in-row navigation aims to dynam-
ically correct a rectilinear trajectory by applying exponential control
based on the norm of the horizontal deviation between the camera cen-
ter and the in-row endpoint. This is determined as the center of mass
of the most significant area beyond a pre-defined depth value acquired
by the RGB-D camera. Exit-row navigation, instead, aims to perform a
rectilinear trajectory for enough time to ensure the rover has completely
exited the row. This trajectory is eventually corrected if an obstacle is
detected in the central area. Finally, out-row navigation is based on a
circular trajectory, which is dynamically adjusted according to the pres-
ence of obstacles in the central or turning-side areas. In particular, the
desired linear velocity is reduced when one is detected proportionally
with respect to its distance.
After extensive testing in different simulated environments, we have suc-
cessfully demonstrated the effectiveness of our system in actual orchard
rows. The results in both settings were promising, showcasing the poten-
tial of our approach.
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As a future research, we aim to conduct further experiments in more
diverse scenarios to validate the versatility and robustness of our method.
In particular, we aim to introduce a dynamic adaptation of the sensing
parameters, such as the distance thresholds, in order to make the system
even more flexible. Moreover, we plan to also introduce an AI-based
object classifier to avoid the detection of false obstacles such as high
grass in the path.

Fig. 1: Snapshots of the simulation illustrating task progression. Top left (red
outline): in-row screen view. Top right (green outline): exit-row screen view.
Bottom left (black outline): simulated environment view. Bottom right (yellow
outline): out-row screen view.
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A control system framework for counterfactuals: an

optimization-based approach

Pierluigi Francesco De Paola ∗†‡, Jared Miller§, Alessandro Borri‡,
Alessia Paglialonga†, Fabrizio Dabbene†

Introduction

In the context of artificial intelligence classification
problems, counterfactuals represent the minimum
change that should occur in an instance to observe a
diverse outcome from the classifier [1]. Counterfac-
tuals have been widely applied to classification prob-
lems where classes are typically associated with risks,
for instance with risk of developing a given disease or
not, thus classes representing safe and unsafe sets [2].
From a theoretical perspective, counterfactuals sug-
gest what should have been different in an instance
(defined as factual, i.e. the input variable of the AI
algorithm) to change with minimum effort the out-
come of the AI algorithm. Indeed, although providing
more insights with respect to the explainability of the
decision of the algorithm, the AI-driven counterfac-
tuals neglect the underlying dynamics of the consid-
ered system, consequently providing merely concep-
tual decisions, representing ”virtual” conditions for
the instances undergoing the change of class.
In this work we propose a control system theoreti-
cal formulation for counterfactuals, with the aim of
assessing a physics-informed approach suitable to ac-
count for the underlying mechanisms driving the change
of class. The control framework is derived by means
of an optimal control problem, aimed at computing
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the minimum control law steering a given initial con-
dition in an unsafe set (the factual) to the safe set.
The terminal state defines the counterfactual. This
problem is then cast in an infinite-dimensional prob-
lem in the space of the measures and subsequently
solved by means of the moment-sum of squares (moment-
SOS) hierarchy through a sequence of convex rela-
tions in the space of the moments, with the aim of de-
riving a general methodology suitable to be exploited
nonlinear systems [3]. This work is preliminary to
the integration of control and AI method to derive
physics-informed personalized minimum recommen-
dations for disease prevention.

Methodology

Consider a general optimal control problem in the
form:

min
u(·)

J(x(t), u(t)) = H(x(T )) +

∫ T

0

h(x(t), u(t)) dt

(1a)

s.t. ẋ(t) = f(x(t), u(t)), (1b)

x(0) ∈ X0, x(t) ∈ X, (1c)

x(T ) ∈ XT , (1d)

u(t) ∈ U, t ∈ [0, T ], (1e)

where x(t) ∈ Rn represents the state of the system at
time t, u(t) ∈ Rm represents the control input, and
f : Rn × Rm → Rn is the vector field describing the
system dynamics, T is the terminal time, H(x(T )) is
the terminal cost, a function of the final state x(T ),
h(x(t), u(t)) is the running cost, a function of the
state x(t), the control u(t). The goal is to find a
control u(t), over the interval [0, T ], that minimizes
the cost functional J(x(t), u(t)), subject to the initial
condition x(0) ∈ X0. The problem can be translated
in the space of measures as follows (primal linear pro-
gram):



p∗ = min
µ,µT

⟨h, µ⟩+ ⟨H,µT ⟩ (2a)

s.t. L∗µ = µ0 − µT (2b)

spt(µ) ⊂ ([0, T ]×X × U), (2c)

spt(µT ) ⊂ (XT ), (2d)

where the minimization occurs with respect to the
occupation measure µ, that encodes the information
of the controlled trajectories, and the terminal mea-
sure µT , for a given known initial measure µ0 =
δt0=0 ⊗ δx0

. The primal problem has a dual formula-
tion in the cone of continuous functions [3], whose so-
lution v(0, x(0)) = γ is a subsolution of the Hamilton-
Jacobi-Bellman PDE, which approximates the value
function along trajectories. To solve the optimiza-
tion problem, it is approximated through a sequence
of finite-dimensional LMI problems in the space of
moments, up to a given relaxation order d. The cost
function to be minimized is the effort of the vector
field as by definition of counterfactuals [1], here con-
sidered as function the L2-norm of the control in-
put u and defined as ∥u(t)∥L2,[0,T ] =

(∫ T

0
|u(t)|2 dt

)
.

Counterfactuals are defined extracting the states as-
sociated with the moments of the terminal measure
µT or simulating the system in closed-loop with the
control law derived from the solution of the Hamilton-
Jacobi-Bellman equation.

Illustrative example

We apply the proposed methodology to a general
glucose-insulin regulation model, the well acknowl-
edged model by Bergman et al. [4], described by the
following system of differential equations:

ẋ1 = −p1x1 − x2x1 + p1Gb (3a)

ẋ2 = −p2x2 + p3x3 (3b)

ẋ3 = −nx3 + p4u (3c)

where x1, x2, x3 represent respectively the blood
glucose concentration, the remote insulin and the serum
insulin concentrations and the input u represents ex-
ogenous insulin administration. The safe set is de-
fined as 80 ≤ x1 ≤ 126 mg/dl (cyan dashed line
in Figure 1), as known from the clinical literature
[5]. Fig.1 shows the results obtained by applying the
proposed method. Counterfactuals are generated by
solving the optimization problem in the space of the
measures and represent the states reached at the ter-
minal time T as the factuals (initial conditions, red
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Figure 1: Factuals (red dots) and the associated coun-
terfactuals (blue dots) as obtained by the proposed
method

dots, randomized over 100 points.) are steered by the
dynamics of the system into the safe set with mini-
mum effort.
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Abstract 

In this work, we present an experimental study aimed at identifying the governing equations of a nonlinear circuit from 
experimental data. Our procedure involves acquiring state variables, constructing a library of potential nonlinear terms, and 
leveraging sparse regression techniques to iteratively refine this library. The goal is to derive a minimal set of terms that 
accurately describe the system dynamics. As an experimental case study, we focus on Chua’s circuit, a well-known nonlinear 
electronic circuit characterized by its ability to exhibit chaotic behaviour through a combination of linear passive elements 
and a nonlinear active component. The circuit is described by the following equations: 

�̇� =
1

𝜏
𝛼(𝑦 − ℎ(𝑥)) 

�̇� =
1

𝜏
(𝑥 − 𝑦 + 𝑧) 

�̇� = −
1

𝜏
𝛽𝑦              

where x, y, and z are the state variables, and h(x) is the piece-wise linear function defined as: 
 

h(x) = m0.x + 0.5(m1 − m0) (|x + 1| − |x − 1|) 
 
The parameter τ is a time scaling factor. This system is known to produce the chaotic double scroll Chua attractor. The circuit 
schematic is illustrated in Fig. 1, and the equations are well-established as per [1], making it an ideal benchmark for validating 
our approach to reconstruct a dynamical system from experimental data. The procedure employs the sparse identification 
method introduced in [2], aiming to provide experimental validation. Our identification process involves acquiring the state 
variables, as shown in Fig. 2(a), and their derivatives. These derivatives can either be directly derived from the circuit or 
computed numerically. To model the circuit's behaviour, we construct a library 𝜃(𝑥) of potential nonlinear terms. This library 
includes a range of candidate terms, encompassing both linear and nonlinear functions of the circuit's state variables. By 
leveraging sparse regression techniques, we iteratively refine this library to identify the minimal set of terms necessary to 
describe the system dynamics. This process includes the identification of unknown factors 𝜉𝑖, which are the sparse coefficient 
vectors corresponding to each individual column. These individual sparse coefficient vectors 𝜉𝑖 are then used to construct the 
sparse matrix Ξ. The iterative refinement process ensures that our model remains parsimonious while capturing the essential 
features of the system's behaviour. The presence of null elements in the sparse matrix allows us to eliminate spurious functions 
from our library 𝜃(𝑥). 
 

               
 
 

Figure 1. Schematic Circuit 
 

Consequently, we derive the governing equations of the system. After deriving the governing equations, we use them to 
reconstruct the system's behaviour, resulting in the reconstructed variables shown in Fig. 2(b). The reconstructed trajectory, 
defined using these variables depicted in Fig. 2(d), is then compared with the attractor from experimental data as shown in 
Fig. 2(c) to validate our study. This comparison demonstrates the success of our study. By iteratively adjusting the model 
parameters to minimize the coefficient error shown in Fig. 2(e) and error between the actual and reconstructed data as shown 
in Fig. 2(f), we ensure that our model captures the underlying dynamics of Chua's circuit.  

----------------------> (1) 
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The equations obtained through sparse regression, detailing how the state variables x, y, and z evolve over time with 
specific parameters identified from experimental data. The saturation function (denoted as satur in this equation) as: 
satur = (|x + 1| − |x − 1|), Notably, the comparison between the equations derived from sparse regression (2) and the original 
equations (1) of the Chua’s circuit reveals an exact match. This validation underscores the effectiveness of our approach in 
capturing the system’s dynamics. 

�̇� = 2ⅇ4𝑠𝑎𝑡𝑢𝑟 − 3ⅇ4𝑥 + 4.96ⅇ4𝑦 
�̇� = 2ⅇ4𝑥 − 1.6ⅇ4𝑦 + 2ⅇ4𝑧            
�̇� = −6ⅇ4𝑦                                          
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(b) 

Figure 2. (a) State variables from the electronic circuit, (b) Reconstructed state variables, (c) Attractor from the electronic 
circuit, (d) Reconstructed attractor (e) Model Coefficient Error (Ec), (f) Performance Prediction Error (Ep),  
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(e) (f) 
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I. INTRODUCTION

The Artificial Racing Coach (ARC) is an interactive driving
instructor that teaches humans to drive at the vehicle handling
limits and sharpen their skill to achieve the best lap time. At
the core, there is our Artificial Race Driver (ARD) [1], a hybrid
AI-optimal control based real-time motion planning and control
framework that autonomously learns the vehicle manoeuvrability
envelope1 and how to control it at the limits. Augmenting ARD
with shared-control of the vehicle, an iterative teaching scheme,
and auditory/visual/haptic feedbacks, we will be able to teach
human drivers how to improve their performance around a racetrack
starting from what the system has learnt from their driving style and
skills.

This extended abstract is a brief summary of our ongoing research
on the Artificial Race Driver and the Artificial Racing Coach. First,
we will quickly introduce the main idea behind ARD, along with
the latest advancements. Then, we will focus on how we intend to
augment ARD to create ARC.

II. ARTIFICIAL RACE DRIVER

Figure 1 illustrates the Artificial Race Driver framework for
minimum-time trajectory planning and control, highlighting the
following key contributions.

1) A high-level motion planner that utilizes online economic
nonlinear model predictive control (E-NMPC) to determine
the time-optimal vehicle trajectory, incorporating a
kineto-dynamical vehicle model and a long planning
horizon of 400 meters.

2) A low-level feedforward neural steering controller (PhS-NN),
designed with an internal structure inspired by vehicle
dynamic laws, and integrated with a feedback steering
controller.

3) A low-level longitudinal speed-tracking controller, developed
based on an identified longitudinal dynamic model.

4) A four-round automatic learning scheme that combines open-
and closed-loop manoeuvers to learn the planning and control
models.

Previously in [1], we have shown that ARD is able to learn
the vehicle dynamics of a black-box vehicle model and exploit
this knowledge to plan and execute online minimum lap times.
Recently, in two upcoming works, we devised a new formulation
of the vehicle’s manoeuvrability envelope [2], using a generalized
polytopic formulation, and we showed how impactful the correct
modelling of the vehicle’s envelope is for the system’s performance
[3]. Thanks to this new formulation, we were able to reach lap-times
just a few tenths of a second slower than the theoretical minimum
achievable by the black-box vehicle model we are driving2. Let us
briefly discuss the new envelope formulation.

1By manoeuvrability envelope we mean the ggv diagram of the
vehicle, a 3D diagram of longitudinal acceleration, lateral acceleration, and
longitudinal velocity.

2The theoretical minimum time was computed by solving an offline
optimal control problem over the entire circuit using the full knowledge
of the vehicle model.

+

Fig. 1: Overall architecture of the Artificial Race Driver (ARD).

A. Generalized polytopic formulation

Figure 2 shows a vehicle’s manoeuvrability envelope modelled
using our new generalized polytopic formulation. Our formulation
leverages convex polytopes and non-linear constraints to efficiently
and accurately model the true envelope with just a few data points.
The main idea can be summarized in three steps.

1) First, we model the vehicle’s manoeuvrability envelope as
a convex polytope. This results in an overestimation of the
vehicle’s capabilities in the non-convex regions, which usually
coincide with the pure longitudinal acceleration limits.

2) Then, we correct the overestimation by adding non-linear
constraints for the maximum and minimum longitudinal
acceleration. This allows us to correctly model the
non-convex regions on the envelope and avoid overestimating
the vehicle’s performance.

3) Lastly, we add two linear constraints to model the true
vehicle’s combined braking capabilities. Although, in theory,
the vehicle can reach those regions, those are highly unstable
and must be avoided to set minimum lap times.

This formulation is not only accurate, but also computationally
efficient. Given that it is mostly based on linear constraints, it is
lightweight and can be used for online motion planning, as we
showed in [3].

Thanks to this new formulation, ARD can now plan more
aggressive trajectories that are closer to the vehicle’s limits,
achieving faster lap times. Moreover, due to the generalized nature
of the formulation, ARD can easily model any manoeuvrability
envelope, allowing the system to adapt to the driver’s skill level
and driving style, crucial for the development of ARC, which is
discussed next.

III. ARTIFICIAL RACING COACH

The Artificial Racing Coach is an extension of ARD that aims to
teach human drivers how to drive at the vehicle handling limits and
achieve the best lap time. ARC consists of three main components:

1) Shared-control: the human driver and the system share the
control of the vehicle, with the system acting as a coach that
helps the driver improve their performance.



(a)

(b)

Fig. 2: New manoeuvrability envelope formulation based on convex
polytopes and non-linear constraints. In orange the resulting envlope, in
red the non-linear constraints for the maximum and minimum longitudinal
acceleration, in grey the linear combined braking constraints. (a) Lateral
view. (b) Top view.

2) Iterative teaching scheme: the system learns from the
driver’s initial performance and adapts its teaching strategy
to help the driver gradually improve their performance.

3) Interface: the system provides real-time feedback to the
driver (e.g., auditory, visual, and haptic) to help them
understand what they are doing wrong, why that is wrong,
and how to correct it.

Several examples of shared-control systems for autonomous
driving exists in literature, such as [4][5]. These works tend to
consider the shared-control aspect and the interaction with the
driver, focusing on safety and comfort in urban scenarios. However,
to the best of our knowledge, none of them consider racing scenarios
nor the teaching aspect of the system. The only work we are aware
of that aims to teach drivers how to drive at the limits is [6], but
it does not consider shared-control. To this end, we are developing
ARC, a system that combines shared-control, an iterative teaching
scheme, and an interface to teach human drivers how to drive at the
limits and achieve the best lap time. Hereafter, a brief description
of how we are developing each component.

A. Shared-control

The shared-control strategy allows ARD to correct the driver’s
mistakes without taking control away from them completely. ARD
computes the time-optimal trajectory in real-time and converts it
into vehicle controls (i.e., steering, throttle, and brake inputs).
The time-optimal trajectory is parametrized to mimic actual driver
style and skills, and also professional racing driver style. This is
necessary to smoothly guide the human driver from his to pro
driving style. We are designing the shared-control strategy (both
longitudinal and lateral) to be adaptive, meaning that it adjusts
the level of assistance provided by ARD based on the driver’s
performance. For example, if the driver is deviating from the
optimal racing line, ARD may apply some torque at the steering
wheel to guide them back on track. If the driver is braking too late,
ARD may at first provide some visual/auditory/haptic feedback, and
if the driver does not react, ARD could take control of the brakes.

B. Iterative teaching scheme

The teaching scheme consists of a series of exercises that the
driver can complete to learn different aspects of racing.

1) First, we let the driver drive on their own and derive their
driving behaviour (i.e., the manoeuvrability envelope).

2) Then, ARD starts from this behaviour and computes only
trajectories that are similar to the ones the driver would take.

3) As the driver improves, ARD will compute more aggressive
trajectories that the driver can learn from.

The idea is to use our new polytopic formulation to model
the driver’s envelope, enlarging it as the driver improves. This
allows ARD to plan trajectories that are slightly outside the driver’s
capabilities, thus pushing the driver to improve. As the manoeuvres
become more complex, the suggestions that come from the interface
play a crucial role in the driver’s learning process.

C. Interface

The interface is a crucial part of ARC. The driver needs to be
able to interact with ARD in a way that is intuitive and easy
to understand. The interface provides real-time feedback on the
driver’s performance and allows them to adjust their driving style
accordingly. We intend to use a combination of visual and auditory
cues to communicate with the driver, as well as haptic feedback to
provide a more immersive experience. For example, the visual cues
may come in the form of a racing line, projected using augmented
reality, that the driver can follow. The auditory cues will be used to
provide feedback on the driver’s performance, such as when they
are braking too late or not steering enough, and will come in the
form of a scripted human interaction. The phrasing and timing of
the suggestions will be carefully designed in collaboration with a
speech expert to ensure that they are effective, easy to understand,
and not distracting. Finally, the haptic feedback will be used to
provide feedback on the vehicle controls, such as when the driver
is applying too much throttle or not steering enough. We may
use vibrations at the pedals and torque at the steering wheel to
communicate this information to the driver.
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1 Abstract

The Internet of Things (IoT) is transforming our world by integrating tech-
nology into every aspect of our lives, addressing social issues, and creating a
smarter, more responsive environment [2]. IoT impacts various sectors, including
industries, homes, agriculture, cities, healthcare, and energy efficiency. However,
challenges such as the heterogeneity of IoT devices, lack of universal standards,
convergence of digital and physical realms, and privacy issues complicate the
systems [1]. With the number of interconnected devices projected to exceed 29
billion by 2030 [3], autonomous configuration and management become essential.
Agents are a significant element, as they facilitate autonomous, socially reactive,
and proactive computational activities, allowing IoT systems to adapt dynam-
ically to environmental changes and user needs [4]. This capability is a perfect
fit for addressing the challenges of IoT.

Our initial step is to develop a robust theoretical model that underpins the
creation of an efficient Agent-Based Automatic Management Infrastructure. This
mathematical model will serve as the cornerstone for ongoing research, facilitat-
ing the validation, design, and refinement of our system. It will also support a
broad range of experiments, integrations, and targeted research initiatives. We
will approach the problem as an optimization framework, enabling us to define
both local and global objective functions. These functions will establish the per-
formance metrics that need to be optimized, whether by individual agents or by
the system as a whole. By allowing flexibility in the choice of objectives—be it
minimizing energy consumption, maximizing efficiency, or optimizing resource
allocation—our system can dynamically adapt to varying conditions and prior-
ities. Agents, the fundamental components of our system, each manage specific
state variables xi, which are crucial to the system’s operation. Through their
interactions, agents contribute to achieving the overall system goals, while also
optimizing their local objectives. This dual focus on local and global optimiza-
tion not only enhances the system’s adaptability but also provides us with a
versatile toolset to fine-tune performance according to situational demands.

Additionally, we have begun developing a testbed to test and compare var-
ious algorithms, complementing our mathematical model and integrating both
theoretical and practical methods. The initial testbed is an indoor localization
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system utilizing IoT devices, categorized into two main types: anchors and tags.
Anchors are stationary radio beacons positioned at fixed locations, serving as
reference points for determining positions. Tags are devices attached to objects
or carried by people that need to be located. The system uses trilateration algo-
rithms to calculate the precise location of the tags, enabling accurate real-time
tracking. The application operates in two modes, Mode A: Tags collect data on
their distance to anchors and battery level, transmitting this to the server via
MQTT. The server processes this data to calculate precise coordinates using a
trilateration algorithm and Mode B: Tags calculate their coordinates based on
distances to anchors and send these directly to the server.

By leveraging an Agent control layer to utilize the two modes, we have cre-
ated an architecture that enhances the integration of microservices with MAS.
Intelligent agents dynamically manage these microservices, improving resource
allocation and operational efficiency based on real-time data. These agents en-
able the system to switch between computational modes and activate or deacti-
vate services as needed, ensuring high performance with minimal resource waste.
Consequently, the agents enhance the flexibility and responsiveness of the system
and underscore the robustness of the microservices architecture.

Our work is an ongoing process, continuously evolving with new findings,
improved methodologies, and advancements in the field. By combining the the-
oretical model with the physical testbed, we aim to create a comprehensive re-
search foundation. This integrated environment will allow us to develop, model,
and experiment freely, enabling us to achieve the best possible results.
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I. INTRODUCTION

Logistics is a term which has its initial roots in the military
context. However, it has now become a prevalent concept
in the business domain, especially among manufacturing
companies and warehouses. Warehousing operations takes
up to 30 % of the total costs of the logistics and it
is considered by many to be the heart of the logistics
[1]. Few of the warehouse operations can be listed as:
receiving the shipments, sorting items, labeling them and
making datasheets, inventory management including cycle
counting and monitoring and stock tracking, and maintaining
a balancing the supply and demands of the objects.

Drones can assist warehousing and by providing
automated inventory operations and surveillance processes.
They also can be used as inspectors for safety and
security of the warehouses or even performing operations at
unreachable locations in warehouses. The cost of employing
and maintaining the drone management system may be
a hinder for the industry for employing drones to their
business. However, drones as a Service (DaaS) strategy,
offers various types of services performed by drones,
including logistic operations, to other businesses allowing
the customers to avoid establishing the drone management
system themselves and reduce their costs. The adoption
of drones in logistics and particularly warehousing, has
assisted the industry in three different categories of inventory
management, inspection and surveillance and infra-structure.
Among the aforementioned, there is more evidence for the
inventory management using DaaS [2]–[4]. In this work, we
aim to provide a brief review of the literature of drones
and their applications in indoor logistics from the control
and optimization prospective. Our work provides a unified
resource for those who seek a unified reference for the both
optimization and control problems and techniques and the
challenges which exist within the context of logistic drones.
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This study primarily aims to examine the optimization and
control strategies for drones within enclosed spaces (indoor
logistics), an area that has not been extensively explored in
the literature. To the authors best knowledge, there has not
been a thorough examination of optimization and control
techniques used for drones in indoor logistics in a unified
study. Therefore, this wok is to fill the perceived gap within
the literature. More precisely, we intend to:

• classify the existing approaches published in recent
years according to their design philosophies

• summarise the advantages and disadvantages of
different guidance and control approaches;

• analyse the current challenges of using different
methods for spaceflight and aerospace applications;

II. METHODOLOGY

The implementation of drones in logistics and
warehousing is a current issue and fairly new, thus,
the time span of this study is decided to be on the last 10
years from 2014 to 2024. Four databases of IEEE Xplore,
Scopus, Web of Science, and ScienceDirect are looked into.
Initially, 183 papers were collected by searching “drones
in logistics.” After narrowing the focus to indoor logistics,
91 papers were removed. and, 32 additional papers were
included. The final keywords used this research are selected
by categorizing and reviewing the entries primarily found
by searching the literature using the mentioned keyword
are the combination of the words: ‘logistics’, "warehouse",
’inventory management’, with ’drone’. In the next step,
we categorized the papers according to the following
characteristics: Activity or the task of the drone as a service,
control and optimization challenge of the task and the
methodology to tackle this issue, and the architecture of
the approach. Once the categorization is done, additional
papers were added to the research entries. The proposed
methodology has 9 steps. is showed in Fig. 1.

III. CONTROL AND OPTIMIZATION METHODS OF
DRONES IN INDOOR LOGISTICS

Drones are an asset for internal logistics, however, they
face multiple challenges that can limit their capabilities. In
the following common problems and the solutions found in
the literature to date, are listed. The main problems and
the challenges of using drones in warehouses and internal
logistics are listed in Table I.

For effective drone control in indoor logistics, localization
is crucial. Handling underactuated quadrotor systems poses
another challenge. We categorize controllers into artificial



TABLE I
MAIN OPTIMIZATION AND CONTROL CHALLENGES FOR INDOOR DRONES

IN LOGISTICS

optimization problems control challenges
mission scheduling obstacle avoidance

routing planning localization
jerk-minimizing autonomous mission

battery usage minimization collision avoidance

intelligence-based, linear, and nonlinear types. Amongst the
linear controllers, evidently the famous PID controller is
the most used controller for a variety of drone applications
of in warehouses [5]. Other control methods, for instance,
linear quadratic control, model predictive control, dynamic
matrix control, are also used and they are implemented
in the references [6], [7]. The most important advantage
of model predictive control is that the constraints of the
problem can be easily modelled, on the other hand, it costs
heavy calculations. Sliding mode contoller, backstepping
controller [8] and H-infinity controller [9] methods are
among the nonlinear controllers used for indoor drone flight
control. The optimization challenges such as rout planning,
or realized as vehicle routing problems is dealt with heuristic
and mathematical optimization techniques such as linear
programming, or derivative based optimization techniques.
Modelling the constraints such as flight time, payload,
placing the charging hub(s) and the assigning the mission
to the drone agents are the optimization problems that are
dealt with the optimization techniques in [10], [11]

IV. CONCLUSION

In this paper, the most challenges of the implementation of
drones in indoor logistics and warehousing are identified and
categorized with the control and optimization perspective.
The aim is to provide a brief reference that unifies this co-
existing issue within the literature.
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There are diverse applications in industry, agriculture and logistics which can
benefit from the use of quadrotor Uncrewed Aerial Vehicles (UAVs) with cable-
suspended payloads. Their control is a challenging topic, given the complex,
nonlinear, and underactuated dynamics of the UAV and the oscillations of the
cargo. To address this problem, one of the most promising robust controllers is
the sliding mode controller (SMC). However, a drawback of first order SMC is
the chattering phenomenon, caused by the discontinuity of the signum function
included in the control signal [1]. This work proposes four chattering-free first
order sliding mode controllers for position and attitude tracking of a quadrotor
with a cable-suspended payload. Our approach, which is inspired by [2], permits
computation of the sliding surface coefficients using a simple linearization of the
dynamic model and Hurwitz Stability, and reduces the undesired oscillations via
approximation with a saturation function.

The Lagrangian formulation [3] is used to develop a mathematical model of
the cargo drone in matrix form, i.e.M(q)q̈+C(q, q̇)q̇+G(q) = BU . The system is
divided into a fully-actuated subsystem (FAS) and an underactuated subsystem
(UAS), and four sliding mode controllers are designed (Fig. 1).
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Fig. 1: Control scheme

The first step is to select a first order sliding surface associated with the
desired behaviour of the system. Here, each sliding surface s is defined as a linear
combination of the corresponding tracking error and its derivative. The second
step is to drive the sliding surface to 0. Consequently, the sliding mode control
consists of two terms: the equivalent control, which controls the system when
the sliding surface is reached and it is found by requiring ṡ = 0; the switching
control, which makes s converge to zero, by imposing the sliding condition

ṡ = −asign (s)− bs.
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For the UAS, the coefficients of the sliding manifolds are obtained via Hurwitz
stability analysis from the linearized system.

Fig. 2 shows the results for xd = 2 m, yd = 2 m, zd = 2 m, ϕd = 0 rad,
θd = 0 rad, and ψd = π/10 rad. The simulations demonstrate the effectiveness
of the proposed controllers for both tracking and chattering elimination. Even if
minimization of the swing angles has not been addressed directly, the designed
SMCs are robust to the oscillations of the cargo. The study represents a first
step towards the development of robust controllers for trajectory tracking and
stabilization of quadrotors with suspended payloads.
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Fig. 2: Tracking and elimination of cargo oscillations and chattering
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Abstract 
 
Autonomous systems, particularly vehicles and robots, are at the forefront of modern techno-
logical advancements. These systems must operate efficiently in crowded and structured envi-
ronments, facing significant challenges in ensuring safety and adaptability. This research aims 
to contribute to the field of motion planning and control for autonomous systems, with a spe-
cific focus on autonomous driving at intersections, by combining the strengths of model-based 
and learning-based methodologies. The primary objective is to develop algorithms that are both 
safe and adaptive, addressing current limitations and pushing the boundaries of state-of-the-art 
technologies [1-3]. 
The initial phase of the project focuses on model-based methodologies, which rely on mathe-
matical models, optimization tools, and algorithms. These approaches provide performance 
guarantees and ensure feasibility, though they often require significant computational re-
sources. The research aims to optimize these methodologies, reducing their computational de-
mands and enhancing their applicability in safety-critical scenarios, such as navigating inter-
sections. In parallel, the project explores learning-based methods, which learn from data and 
experiments without relying on explicit models. These methods have shown promise in non-
safety-critical applications due to their efficiency and adaptability. However, their lack of in-
terpretability presents challenges in ensuring performance guarantees. The research develops 
techniques to improve the interpretability and reliability of learning-based approaches, making 
them suitable for safety-critical applications like intersection management. 
The core innovation of this research lies in the integration of model-based and learning-based 
approaches. By harnessing the strengths of both methodologies, the project aims to achieve the 
following: 

• Efficiency: Leveraging the computational advantages of learning-based methods. 
• Adaptability: Ensuring that the systems can handle diverse and complex scenarios, par-

ticularly at intersections. 
• Performance Guarantees: Providing safety and reliability through model-based meth-

ods. 



Simulation 
In this section, we define the problem as follows: Our system is impacted by two different 
stochastic disturbances occurring at different times. Our initial objective is to design two robust 
Model Predictive Controllers (MPC), specifically Tube MPCs, tailored to each disturbance. 
Subsequently, we aim to develop an outer controller using learning methods to switch between 
the inner controllers in response to the respective disturbances. The system we simulated is 
illustrated in the following block diagram. The proposed method will be compared with 
previous work. 
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The co-transport (collaborative-transport) of deformable materials such as
fabrics, composite materials, cables, or wires poses significant challenges for in-
dustrial robotics due to the material’s tendency to slide, stretch, and deform.
Common approaches rely on force sensors [1], or with depth images and neural
networks (NN) [2], to estimate and restore the material’s ideal state. Methods
face issues with force control effects and the industrial reliability, respectively.

We propose a new method based on the estimation of the deformability
constraints of flexible materials. These constraints allow to obtain geometric
parameters that enable the trajectory planning for a collaborative manipula-
tor, ensuring deformation constraints are maintained throughout the transport
process.

By estimating the shape of the fabric using a mathematical model under
appropriate assumptions, we can simplify its complex dynamic modeling [3].
The fabric is represented as a set of stitches arranged in a pattern, with adja-
cent points linked by a mass-spring-damper relationship. The width, length, and
density of points per surface are necessary parameters to simulate the fabric.
The spring and damper parameters can be tuned to best fit the material used.

Fig. 1: From the fabric (left) to the catenary rapresentation (right)

This model can be further simplified using the catenary equation [4]. The
fabric is considered as a parallel set of wire, linked perpendicularly to the handled
edges, that are parallel to each other. All the wires are described by the catenary
equation with the same coefficients.

An algorithm based on the catenary equation computes the desired distance
between the handled points to achieve the desired deformation. A degree of
freedom allows the human operator to choose the height difference between the
robot’s end-effector and the human’s handling point. The robot must maintain
the same angles found with trigonometry formulas based on the extremum points
of the edge handled by the human operator.
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This approach identifies the point the robot’s end-effector has to reach. Two
additional algorithms plan and execute corrective actions to maintain the de-
sired fabric configuration, reaching continuously the desired points. The faster
the robot’s reaction time is, the more fluid and efficient the collaboration. The
proposed method optimizes trajectory planning with near-time-optimal control,
ensuring safety in accordance with ISO/TS 15066 guidelines.

The system is tested in a simulation scenario in which the human moves
along a planned trajectory. The robot has an initial delay of 2s, then begins its
working loop: acquiring and computing the image for 0.1 seconds, then planning
and executing the trajectory. The distance between the robot’s end-effector and
the human handling point, and its RMS value, are analyzed.

(a) Distance (b) RMS

Fig. 2: RMS

At around 2s, the robot’s end-effector is at the maximum distance from the
human handling point, resulting in a peak RMS value. This moment marks the
last instance of the robot’s waiting condition, after which the robot reduces the
error. While individual coordinate errors are minor, their cumulative effect is
significant, highlighting how delays and physical limitations impact robot mo-
tion. Finally, the method is feasible solution that is easy to tune, quick to train,
and sufficiently reliable for industrial applications.
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The landscape of social robot navigation has grown considerably, with many
approaches aimed at ensuring safe and efficient cooperation between robots and
humans. Rapid decision-making and emulation of human-like navigation proto-
cols, which involve non-verbal cues, are essential for fostering natural and smooth
interactions. Existing reactive strategies, including social force models (SFMs),
do not provide robust deadlock-free guarantees and may struggle in complex sce-
narios. The approach we propose addresses critical limitations of existing meth-
ods by integrating the robustness of potential fields [1] with the adaptability of
nonlinear opinion dynamics [2]. This combination ensures reliable and efficient
navigation in human-shared environments, guaranteeing collision avoidance and
enhancing the robot’s social acceptability in dynamic and unpredictable settings.

In this work, we leverage potential fields with an attractive field guiding the
robot towards its goal. To enhance obstacle avoidance, we introduce a vortex field
that pushes the robot towards an oval limit cycle around humans (Figure 1). This
particular shape is a generalisation of the circular limit cycle model which allows
to reduce trajectory curvature, minimise jerk, and respect human’s personal
space [3]. However, traditional potential fields may have some limitations such as
jerky trajectories and oscillatory behaviour, and lack of control over the direction
of rotation around obstacles.

Fig. 1: Oval limit cycle and vortex repulsive field around the human [3]

To overcome these issues, we integrate opinion dynamics with potential fields
to influence obstacle circumnavigation, ensuring smooth and predictable naviga-
tion. The opinion-driven robot navigation model [2] is useful in potentially con-
flicting situations like the human-corridor-passing problem. It allows the robot
to regulate its angular velocity while continuously updating each agent’s opinion
in response to its own state, the opinions of others, and external stimuli. The
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Fig. 2: On the left, the trajectories of the agents as they move towards their goals
(stars); on the right, robot’s opinion and attention over time. Temporal markers
(black dots) are shown along the spatial trajectories, opinion and attention.

robot’s opinion about its passing direction evolves dynamically, focusing on the
human mover most rapidly approaching. A critical distance parameter adjusts
the robot’s attention as it approaches a human, prompting timely reactions.
By integrating opinion dynamics with potential fields, we define the direction
of rotation of the potential vortex, enabling anticipatory and smooth avoidance
manoeuvres. In this way, the robot’s dynamically evolving opinion influences the
potential fields, ensuring fast and decisive movements, preventing deadlocks, and
balancing reliability with efficiency.

Simulations and experiments confirm the effectiveness of the proposed method.
Figure 2 illustrates a mobile robot navigating around two pedestrians using our
approach. The robot successfully reaches its goal while gracefully avoiding the
human along its way. The attention graph shows how the robot’s attention rises
with the proximity of a human. In terms of opinion, when a human is on the
robot’s left, it turns right, navigating counterclockwise, and vice versa for a
human on its right. In conclusion, this study offers a promising solution for
socially-aware robot navigation, enabling robots to dynamically adjust to hu-
man presence, thereby promoting harmonious human-robot coexistence.
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Abstract— In this paper, we propose a new piecewise constant
mesoscopic feedback for practical string-stability of a platoon
under sampled and quantized measurements. The design is
based on a mesoscopic approach and is carried out over the
sampled-data model associated to each vehicle.

I. MOTIVATION AND INTRODUCTION

Traffic congestion, car accidents, bad driving, and pol-
lution challenge researchers to develop intelligent vehicle
control systems. A key issue is ’stop and go waves,’ where
disturbances in one vehicle amplify through following ve-
hicles. In this view, String Stability (SS) [1] is crucial,
ensuring a series of vehicles maintain a target distance and
prevent perturbations from amplifying. Studies show that
using macroscopic information, which aggregates data from
the entire platoon, can ensure SS [2]. Moreover, commu-
nication devices between vehicles are vital, as seen with
quantization preventing stability [3]. This paper examines
an homogeneous platoon with quantized transmitted mea-
surements. We propose a sampled-data mesoscopic controller
using quantized information to investigate and preserve SS.

II. MODELING AND PROBLEM FORMULATION

A. Microscopic modeling

Let IN
0 be the set of N vehicles composing a platoon.

Each vehicle is described by its longitudinal position, ri ∈
R+, and its longitudinal speed v ∈ R+, such that we adopt
as state vector xi =

[
ri vi

]⊤
, ∀ i ∈ IN

0 . We will consider
as state variable the error in position and velocity of two
following vehicles χi := xi − xi−1. Under the assumption
of piecewise constant control, the sampled-data equivalent
model [4] is given by

χi(tk+1) = Adχi(tk) +Bd(ui(tk)− ui−1(tk)) (1)

with Ad = eAT =

[
1 T
0 1

]
, Bd =

∫ T

0
eAsdsB =

[
T 2

2
T

]
For all tk = kT being the sampling time, T sampling
period. Assuming that ∆p̄ > 0 is the desired inter-vehicular
distance at steady state, the equilibrium point for the ith
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system corresponds to the case where all the vehicles have
the same speed and are at the same distance, i.e. χe,i = χ̄ =

[−∆p̄ 0]
⊤. In this context, we define the lumped state and

the lumped equilibrium for ui−1 = 0 respectively as

χ=
[
χ⊤
0 χ⊤

1 · · · χ⊤
N

]⊤
, χe=

[
χ̄⊤ χ̄⊤ . . . χ̄⊤]⊤ (2)

B. Macroscopic modeling

To model the function entailing the information along the
platoon, we assume each vehicle receives partial aggregate
information on the platoon. For i ∈ IN

0 we define this
macroscopic information function as ψi−1(χi(tk)) : R2 ×
· · ·︸︷︷︸

i times

×R2 7→ R2, with the property that

|ψi−1(χ0(tk), · · · , χi−1(tk))| ≤ cmax
i∈IN

0

|χi−1(tk)|. (3)

In the following, we assume this function to be received by
the vehicles at the sampling instants only, i.e. tk.

C. Problem Statement

Under the assumptions, the goal is to derive a piecewise
constant controller that asymptotically tracks the desired
distance given by the constant spacing policy ∆pri (tk) =
−∆p̄, of the form

ui(tk) =q(ui−1(tk)) +Kdq(χi(tk))

+ Fdq(ψi−1(q(χ0(tk)), . . . , q(χi−1(tk))))
(4)

where tk = kT and Kd, Fd are matrices to be specified
later on and q(·) is the quantizer, such that |y| ≤ M ⇒
|q(y) − y| ≤ µ. We want this controller to ensure practical
String Stability (pSS) in the sense of the definition below.

Definition 2.1 (Practical String Stability): For all i ∈
IN
0 , system (1) is said to be practically string stable (pSS) if

there exists ϑµ ≥ 0 such that the following conditions hold:
(i) for all ε > 0 there exists αε > 0 such that for all

N ∈ N, tk ∈ ∆

max
i∈IN

0

|χi(0)−χe,i| < αε ⇒ max
i∈IN

0

|χi(tk)−χe,i| < ε+ϑµ;

(5)
(ii) the trajectories asymptotically approach the set

Bϑµ
(χe) =

{
χ ∈ R2 : |χ− χe| ≤ ϑµ

}
, i.e.

lim
tk→∞

|χi(tk)|Bϑµ (χe) = 0. (6)
The problem is then formalized as follows.

pSS Digital Control Problem: Consider a platoon of ve-
hicles described by (1) under the assumptions (piecewise
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Fig. 1: Speed of the leader.

constant control and quantized measurements). Design a
feedback law as in (4) making the equilibrium χe of the
closed-loop platoon pSS with respect to µ in the sense of
Definition 2.1.

III. MAIN RESULT

At this point, the main result can be stated.
Theorem 3.1: The pSS Digital Control Problem is solved

by the control (4), ψi(tk) and the matrices Fd,Kd verifying
the conditions below:

1) the matrix Ad −BdKd is Schur;
2) there exists c ∈ R+ such that the macroscopic function

verifies (3) for all i ∈ IN
0

3) the parameter γ = (1 − α)−1cβrg verifies γ ∈ (0, 1)

for α = maxλ∈σ(Ad−BdKd) |λ|, β = |Ad−BdKd|
α , g =

|Bd|, r = |Fd|.
Then, by setting κ = |Kd|, the closed-loop platoon is pSS
with ϑµ = (1− (α+ grcβ)−1βgµ (κ+ r(c+ 1) + 1) .

IV. NUMERICAL RESULTS

We consider N = 10 vehicles. The constant reference
distance is set ∆p̄ = 20 m and the initial desired speed of
the leader is 20 m/s, while the acceleration is bounded by
−7 ≤ ui ≤ 7 m/s2. The color scale represents the vehicles
from the head pair (0,1) (dark blue) to the tail one (N−1, N)
(light blue). The leader tracks a piecewise constant reference
speed profile vref , as seen in Fig. 1. Nevertheless, we can
see by Figs. 2a,2b that the perturbation decreases along the
platoon, as expected, validating the theoretical result.

V. CONCLUSIONS

We propose a new sampled-data quantized mesoscopic
controller to ensure practical string stability to a vehicle
platoon, affected by sampling and quantization effects. The
design is constructive, allowing control law parameters to be
freely tuned for desired performance. Quantization broadens
the approach’s applicability.
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Abstract—With the rise in frequency of environmental diseases
like wildfires and landslides, protection and risk management
have become critical challenges for assuring both the safety of
human populations and the sustainability of ecosystems. In this
direction, a suite of functionalities and solutions have been devel-
oped to support emergency operators in all phases of emergency
management, from risk estimation to enviromental monitoring,
early detection and response. The present paper provides an
overview of the main algorithms that consistute the building
blocks of the enviromental monitoring system developed within
the ARIES project, founded by ESA, through a combination
of dynamical systems, digital twins and convolutional neural
networks, also reporting on its early validation activities.

Index Terms—Convolutional Neural Networks, Digital Twins,
Cellular Automata, Voronoi Tessellation, UAVs

I. THE ARIES PROJECT: FUNCTIONAL ARCHITECTURE

This work presents the results and algorithms developed in
the scope of the ARIES project, to address the challenges of
efficient fire management through a satellite-enabled monitor-
ing framework and the employment of UAVs. In particular,
the main functionalities include:

• the development of a deep learning-based solution for
joint estimation of both wildfire and landslide risk
through an ad-hoc multi-channel convolutional neural
network (CNN) architecture. Starting from remotely
sensed satellite data, the proposed algorithm aims to make
accurate long-term predictions, producing a pixel-wise
risk assessment of the region of interest;

• the design of a fire spreading simulator that acts as a
digital twin for the monitored area. By combining satellite
data and real-time sensor measurements, the designed
digital system behaves as a short-term risk predictor. The
output is used to produce an optimal scheduling logic
to achieve the best monitoring strategy for a fleet of
patrolling drones;

• a CNN-based solution for real-time automated fire detec-
tion directly from ground or drone-mounted cameras.

The building blocks of the ARIES architecture, from the
algorithms proposed to the emergency management process,
are illustrated in Fig. 1.

A. CNN-based Long-term Risk Prediction

The first solution involves the design of a multi-channel
CNN [1] aimed at producing a wildfire and landslide suscep-
tibility analysis starting only from remotely sensed (offline)

Fig. 1. The ARIES architecture. The DSS and the optimal sensor network
are fed with the three main functionalities described in this work, developed
to support the emergency management process (left).

data. The neural network processes images related to the
Normalized Difference Vegetation Index (NDVI), Digital Ele-
vation Model (DEM), lithology, land cover, and other satellite
sources [2] that are strongly related to the emergence of
environmental hazards. The proposed architecture is illustrated
in Fig. 2 and utilizes a combination of convolutional and
deconvolutional layers, typical of autoencoders, to produce
detailed risk maps for both fires and landslides. The network
has been trained with a multi-objective loss function, given
by the combination of a customized Weighted Mean Squared
Error (MSE) evaluated over the fire masks and a Weighted Bi-
nary Cross Entropy (WBCE) over the landslides susceptibility
examples.

B. Short-term Risk Management employing UAVs

The proposed short-term risk predictor emulates the fire
spreading over the region by integrating offline satellite data
with real-time sensor measurements. By the employment of
the so-called Cellular Automata (CA) systems, the region has
been divided in cells and a Digital Twin for the monitored area
has been developed. The discrete system evolves according to
the concepts of cell states, cell neighborhoods and transition
functions. At each time step, the risk distribution is processed
by the Voronoi Tessellation algorithm that identifies the way-
points after having performed an optimal partitioning of the
area based on a distance measure, the field-of-view of drones’
cameras, enhancing the monitoring efficiency [3]. An example



Fig. 2. CNN architecture employed for one-shot predictions for both
landslides and wildfires in form of a risk map.

of the resulting Voronoi Tessellation starting from NDVI is
shown in Fig. 3. A Dispatch Controller is employed, then, to
select the target waypoint with the highest priority depending
on the on-going situation. The architecture of the monitoring
system described in this section is illustrated in Fig. 4.

Fig. 3. From left to right: the NDVI computed over the test area, the heatmap
generated from the fire probability distribution over cells and the resulting
Voronoi partition of the region.

Fig. 4. Architecture of the drone-based surveillance system.

C. Real-time Fire Detection with CNNs

For real-time fire detection, a CNN-based solution using
the U-Net proposed in [4] has been developed. This model
processes images from ground and drone-mounted cameras to
identify fire events promptly. Trained on an augmented dataset
generated by merging and shuffling samples from the BoWFire
Dataset and the Corsican Fire Database, the network has been
validated achieving high accuracy on the test set.

Fig. 5. Validation results of the CNN-based detector. From top to bottom:
the input image, the ground truth and the U-Net prediction.

D. Case studies and results

The CNN-based long-term predictor has shown high per-
formances, especially regarding the Recall score. The short-
term risk management system was validated considering the
”Pineta di Roio” area (Italy), successfully simulating fire
spreading events and optimizing drone patrols. The promising
generalisation capabilities of the U-Net are highlighted from
the results obtained on the test set (Fig. 5), crucial aspect to
deploy the model in real-time applications.
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Introduction

The Extended Kalman Filter (EKF) is a widely used algorithm for state es-
timation in nonlinear dynamic systems. Its performance critically depends on
selecting accurate process and measurement noise covariance matrices, Q and
R. This work proposes an adaptive method for optimizing these matrices via
numerical gradient descent and Monte Carlo optimization techniques.

Consider a discrete-time nonlinear time-invariant system:{
xk+1 = f(xk,uk) +wk

zk = h(xk,uk) + vk

(1)

where x is the state, z is the output measurement, u is the input, f and h are the
state transition and measurement functions, and w and v are the process and
measurement Gaussian noise with covariance matrices Q and R, respectively.

The standard EKF equations are [1]:

x̂k|k−1 = f(x̂k−1|k−1,uk−1)

Pk|k−1 = Fk−1Pk−1|k−1F
⊤
k−1 +Qk−1

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k +Rk)

−1

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k|k−1,uk))

Pk|k = (I−KkHk)Pk|k−1

(2)

where x̂ is the estimate, P is the estimate covariance matrix, K is the Kalman
gain, and F and H are the Jacobian matrices of f and h w.r.t. the state x̂.

Methodology

The proposed methodology involves defining a cost function based on the per-
ceived error, which is the discrepancy between the EKF output h(x̂k|k−1,uk)
and the actual measurement zk:

J(Q,R) =
N−1∑
k=0

(
zk − h(xk|k)

)⊤
W−1

(
zk − h(xk|k)

)
+ det (W) (3)
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where N is the number of samples, and W is a weighting matrix that can be
constructed starting from Q and R matrices as shown in [2].

To minimize the cost function (3), several simulations are performed in the
neighborhood of the estimated state. The numerical gradient is computed by
averaging the output measurements, and it is used to update estimates of Q
and R. Monte Carlo techniques are employed to find the optimal structure and
values of these matrices. The optimization process follows these steps:

0. Initialization: Choose a initial guesses Q0 and R0.
1. Simulation: Run a batch of simulation usingQi andRi with different initial

state estimate in a neighborhood x̂0.
2. Evaluation: Compute the cost function J(Qi,Ri) and its numerical gradi-

ent GQi and GRi w.r.t. Qi and Ri, respectively.
3. Update: Use computed GQi

and GRi
to adjust the covariance matrices as

Qi+1= Γ(Qi,GQi
, σi) and Ri+1= Γ(Ri,GRi

, σi), where Γ is defined as [3]:

Γ(M,G, σ) := M
1
2 exp (σM− 1

2GM− 1
2 )M

1
2 ∈ S+, ∀σ ∈ [0, 1] (4)

with S+ := {X ∈ Rn×n, n > 0 : X = X⊤ ≻ 0}.

It must be noted that with (4),Q and R move on the manifold S+, solving
the problem of keeping them positive-definite. The parameter σ is analogous to
the gradient descent step and must be chosen carefully.

Conclusion

Hereby, we propose a systematical approach to tune the covariance matrices
Q and R for the improvement of EKF’s performance, as opposed to classical
methods that often rely on heuristical or experimental approaches. Numerical
gradients and Monte Carlo optimization techniques are employed to achieve this
goal. We also address the problem of maintaining Q and R positive-definite, in
which preliminary efforts using direct gradient descent revealed difficulties.

Further investigation into optimization methods on Riemannian manifolds
and other state-of-the-art approaches will advance the robustness and applica-
bility of this technique in various real-world scenarios.
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Safe Reinforcement Learning-Based Voltage Control
in Nonlinear Power Systems
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Abstract—High penetration of renewable energy
sources (RES) adds further uncertainty to the power
systems, which are complex and nonlinear as well.
Reinforcement learning (RL) approaches, due to their
good performance with stochastic nonlinear systems,
recently attracted interests in the control of power sys-
tem, including voltage regulation. However, ensuring
the safety of these controllers is challenging because
of potential instabilities. This work proposes a decen-
tralized safe RL framework for voltage control using
inverter-based DERs, guaranteeing exponential stabil-
ity with specific Lipschitz constraints. Optimizing these
bounds expands the search space for neural network
controllers. The framework trains the neural network
of each busbar using local measurements, eliminating
the need for communication links. The method is tested
on IEEE 15 and 33 busbar networks.

I. Introduction
Modern power systems are increasingly complex due to

the rise of distributed energy resources (DERs) like rooftop
solar, electric vehicles, and battery storage, causing rapid
voltage fluctuations beyond the capabilities of traditional
controls. While power electronic inverters offer fast and
flexible control, developing decentralized controllers that
work solely on local measurements without real-time com-
munication remains a significant challenge.

Several studies have explored using reinforcement learn-
ing (RL) for voltage control in power systems with algo-
rithms such as deep Q-learning and actor-critic methods
to manage devices like tap-changing transformers and
inverter-based resources. However, these approaches often
overlook stability requirements, typically assessed through
simulations. This work proposes a decentralized safe RL
framework ensuring exponential stability by employing
engineered neural network controllers that comply with
Lipschitz constraints.

The main contribution of this project is summarized in
the following:

• Previous studies have mainly focused on radial net-
works, often neglecting the complexities and impact
of meshed networks on controller performance.
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• Linear and nonlinear models will be evaluated to iden-
tify an optimal operating domain for system stability.

• The impact of decentralized voltage regulation on
active power flow between adjacent busbars will be
assessed to ensure compliance with power system
constraints.

A. Problem Formulation
Fig. 1 depicts the IEEE standard 15 busbar network,

and because this network is a radial network, the linDist-
flow approach is formulated to model the dynamics of the
busses voltages. The network model is as follows:

v = Rp + Xq + 1 (1)

where 1 is the one’s vector. Matrices R, X, are positive
definite and they describe the network, while p and q are
vectors defining the active and reactive power of the bus
bars [1], [2]. This study focuses on finding the optimal con-
trol q through inverter-based resources to minimize a given
cost function. Denote qi = ui(vi) as the control law for
each bus i = 1, ..., N , which is a mapping from voltage to
reactive power. Let vi,t be the local voltage at the bus i at
tth iteration step, and denote ut = (u1(v1,t), ..., uN (vN,t)).
The q and v update iteratively as:

qt+1 = qt − ut

vt+1 = Rp + X(qt − ut) + 1
(2)

The objective is to select the control ut to minimize the
cost function C(u), subject to the iterative update rule

Fig. 1. IEEE standard 15 busbar network
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and saturation limit on ut. The optimization problem is
formulated as:

min
u

C(u)

s.t. qt+1 = qt − ut

vt+1 = Rp + X(qt − ut) + 1

ut ≤ ut ≤ ut

ut is stabilizing

(3)

where ut and ut are the lower and upper bounds for
the control action at bus i, respectively. The origin of the
system can be shifted by vt − 1 denoted by v̂t.

For stabilizing the controller, reference [3] proves that as
long as each controller ui satisfies a Lipschitz constraint,
the system is guaranteed to be locally exponentially stable.
This theorem is mentioned below.

Theorem I.1. Suppose a vector k = (k1, ..., kN ) satisfies
0 < diag(k) < 2X−1. Then if the derivative of the
controller satisfies ui(0) = 0 and 0 < dui(v̂i)

dv̂i
< ki for

all i = 1, ..., N , the equilibrium point v̂ = 0 of the dynamic
system is locally exponentially stable.

Now, with consideration that all feasible stabilizing u
are in a convex set described by S = {∇v̂u|0 < ∇v̂ <

2X−1}, each dui(v̂i)
dv̂i

needs to be bounded by a separate
ki for bus i = 1, ..., N . Therefore, by optimally choosing
the k, a larger search space for the neural network can be
defined [3]. ∇v̂ is defined as follows:

∇v̂ =


du1(v̂1)

dv̂1
. . .

duN (v̂N )
dv̂N

 (4)

A neural network can be structured to fulfill the require-
ments for safe voltage control by having the optimal k
values and satisfying conditions of Theorem 1. This neural
network is designed based on the following Corollary.

Corollary I.1. The condition for a locally stabilizing
controller in Theorem I.1 is equivalent to:

1) uθi
(v̂θi

) has the same sign as v̂θi

2) uθi
(v̂θi

) is monotonically increasing.

3) dui(v̂i)
dv̂i

< ki.

To fulfill these conditions, the activation function can
be divided into positive and negative parts as follows:

uθi (v̂θi ) = siReLU(1v̂i + bi) + ziReLU(−1v̂i + di)

where 0 <

l∑
j=1

sj
i < ki, ∀l = 1, 2, ..., m

− ki <

l∑
j=1

zj
i < 0, ∀l = 1, 2, ..., m

bl
i = 0, bl

i ≤ b
(l−1)
i ∀l = 2, 3, ..., m

dl
i = 0, dl

i ≤ d
(l−1)
i ∀l = 2, 3, ..., m

(5)

where s and z are weight vectors, and b and d are bias
vectors of buses. m is the number of neurons and 1 ∈ Rm

B. Decentrilized Safe reinforcement learning
The Reinforce policy gradient method is a model-free

RL algorithm that optimizes each state’s policy by directly
estimating the gradients of the expected reward with
respect to the policy parameters, instead of using Bellman
equations to calculate state and state-action value func-
tions.The proposed method uses this method to sample
initial states, simulate system dynamics, and collect state-
action trajectories with corresponding rewards. These re-
wards, based on deviations from the desired state and
control effort (6), are used to compute the loss as the
negative mean of the product of log probabilities and
normalized rewards. Gradients of this loss update the
neural network controllers to enhance performance over
time. Repeating this process across multiple episodes with
decaying exploration noise leads to a control policy that
minimizes voltage deviations and control effort. The gra-
dient for updating weights of the neural network controller
at bus i is obtained by [4].

r = −|v̂i,t| − α|ui,t| (6)

∇J(θ) = E[
T∑

t=1
∇θlogπθ(ui,t|v̂i,t)

T∑
t=1

Ci(ui,t)], (7)

where α is a penalty factor for the control effort, θ is the
parameter vector, πθ is the taken policy at each state and
Ci(u(i, t)) is the cumulative rewards of the taken actions.

II. Conclusions
This work addresses the complex challenges of voltage

control in modern power systems through a decentral-
ized safe RL framework. By ensuring stability through
engineered neural network controllers, this approach of-
fers a robust solution for managing the variability and
uncertainty of DERs. The findings will contribute to the
development of more resilient and efficient power systems.

The expected outcomes of our research include an en-
hanced understanding of meshed networks, filling the gaps
left by previous studies that focused on radial networks
and often overlooked the complexities of meshed networks
and their impact on controller performance. By evaluating
both linear and nonlinear models, we aim to identify
optimal operating domains that ensure system stability
under varying conditions. Additionally, we will assess the
impact of decentralized voltage regulation on active power
flow between adjacent busbars to ensure compliance with
all power system constraints, thereby promoting more
efficient and stable power network operations.
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EXTENDED ABSTRACT

INTRODUCTION

Contracting dynamical systems exhibit remarkable
convergence and robustness properties. In recent years,
these properties have made contraction theory a valuable
tool for developing robust controllers and advanced
convergence analysis techniques. In this work, we
leverage contraction theory alongside neural networks
to develop a non-linear feedback controller capable of
performing trajectory-tracking tasks effectively.

Existing works: This work builds upon several
recent papers, notably [1] and [2], while also incor-
porating insights from [3]. In [1], the authors present
a method for synchronizing a network of identical
agents to a leader, which is an autonomous system.
Conversely, [2] addresses the task of trajectory tracking,
where the leader is not an autonomous system but is
instead controlled by a feedforward input. Both papers
utilize deep neural networks to solve these problems
through a two-step approach, which is also employed
in this work. Additionally, [3] extends the framework
of Control Contraction Metrics (CCMs) with adaptive
control arguments, a methodology echoed in [4].

Contribution: Compared to state-of-the-art methods,
the controller here proposed incorporates an adaptation
layer to address parametric uncertainties in the system
of interest. Our controller draws inspiration from recent
works using Lyapunov-like arguments [1, 2] and standard
adaptive control techniques [3], integrating in the former
controller design an adaptive control term.

Although still a work-in-progress, this approach has
already shown promising results in simulation, even in
the presence of added noise.

RESULTS

A. Description and methodology

1) System: Regarding the type of systems considered,
this framework can work for very general cases, being
able to control non-linear control affine (with state-
dependent g) systems, possibly time-varying, where a
pair (x, u) is tasked to track a desired reference trajectory

This work is partially supported by the EU Next-Generation
(PNRR) within the Italian National Ph.D. Program in Autonomous
Systems (DAuSy). M. Perin and A. Cenedese are with the University
of Padova, Italy. F. Bullo is with the University of California, Santa
Barbara, United States

Contacts: marco.perin.6@studenti.unipd.it

(xr, ur). In detail, the mathematical model in (1) is used

ẋ = f(x) + g(x)u −∆T (x)ϑ (1a)

ẋr = f(xr) + g(xr)ur(t)−∆T (xr)ϑ (1b)

where the last term in the equations accounts for the
uncertainties, and ϑ is the system parameter set.

Indeed, the main assumption, made in this preliminary
work is that the uncertainties need to satisfy the matching
condition, meaning that the uncertain term can be
written as ∆T (x)ϑ = g(x)ϕ(x)ϑ, that means that the
uncertainties lies in the image of the input matrix g(x).

Starting from an original Feedback Controller [2]

uF = ur(t) + (κ(xr(t))− κ(x(t))) (2)

an Adaptive Deep Learning Controller is introduced,
whose structure is given as in (3)

uA = ur(t) + (κ(xr(t))− κ(x(t))) + ϕT (x)ϑ̂(t) (3a)
˙̂
ϑ = Γ[ϕ(x)g(x)P (x, t)(x− xr) + σϑ] (3b)

where κ(·) is the learned controller, P (·) is the
learned metric, ϕT (x) is the uncertainty matrix, ϑ̂ is the
parameter estimate, Γ and σ are respectively a matrix
and a scalar gain,

2) Controller design: The controller design includes
a learning process and is divided in two phases. The
first one consists of finding a matrix P = P T ≻ 0 that
satisfies the contraction condition in (4a) and (4b), where
the second step consists in learning a suitable feedback
control law κ(·) satisfying (4c).

LfP (·)− ρP (·)g(·)gT (·)P (·) ⪯ −λP (·) (4a)

LgP (x, t) = 0 (4b)
δκ

δx
(x, t) = P (x, t)g(x) (4c)

B. Numerical validation

System description: The system employed for these
simulations is the well-known Lorentz attractor model,
used in the literature because it is nonlinear and chaotic,
and provides a good benchmark for controllers. Its
model is the one in (5), with parameters (σ, ρ, β) =
(10, 28, 8/3) making the system chaotic:ẋ1ẋ2

ẋ3

=


σ(x2−x1)

x1(ρ−x3)−x2
x1x2−βx3

+
 1
2+s(x1)

[u−ϕT (x)ϑ
]

(5)
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s(·) standing for the sine operator, and scalar input u
taking the form of uF or uA (respectively, (2) and (3)).
Simulations are run in two cases, presenting how the
controller works under ϕ(x) having multiple dimension.

1) One-parameter ϑ: For this simulation, ϕ(x) =
[−x1], and it is possible to see how the controller with
adaptation (uA) outperforms the one without (uF ) after
a short time in Figure 1. Indeed, the tracking error is
gradually reduced with the proposed approach, while it
can be appreciated that it does not decrease (and is not
negligible) otherwise.
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Fig. 1: Time simulation with one parameter

2) Two-parameters ϑ: With two parameters, namely
having ϕ(x) =

[ −x1

x2−x1

]
, the controller is working as

well, still leading to correctly decreasing the tracking
error, as it can be seen in Figure 2. Note that the
parameters do not converge to the true ones, but this is
an expected behaviour, as the controller is not designed
to estimate them, but just to reduce the tracking error.

CONCLUSION

Our preliminary results indicate that the adaptive
control law proposed is effective and holds promise
as an enhancement to the existing solution. Ongoing
studies aim to broaden the applicability to a wider
range of uncertain parameters and improve convergence.
Should these efforts prove successful, the next steps
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Fig. 2: Time simulation with two parameters

would involve implementing the controller in a realistic
simulation scenario, followed by experimental tests on
a real device.
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Abstract—A novel optimal LQR state-feedback control law
is proposed for energy harvesting maximization in regenerative
suspension systems where an actively governed electromechanical
actuator is used in place of the viscous damper. A special
LQR cost function is considered that directly maximizes the
electrical power generated by the electromechanical actuator.
Other conflicting control objectives, such as ride comfort and
road handling, may be considered along with the energy har-
vesting objective in the proposed control setup, allowing one
to directly trade-off among them depending on the application.
Specifically, as an example, a condition for trading-off between
energy harvesting and ride comfort is added to the optimization
problem via forcing a bound on the so called Ride Index.
The proposed control law is finally contrasted with other two
control strategies usually considered in the literature for energy
harvesting applications and is compared in simulative studies via
MATLAB and Simulink on a full-car model.

I. INTRODUCTION

A technology that attempts to convert the kinetic and
potential energy of the suspensions into electrical energy via an
electromechanical generator instead of dispersing it is called
a regenerative suspension system, see [1] for a recent survey.
If an electric or hybrid car featured one of these, the energy it
collected could be put toward charging the battery, extending
the range of the car.

This work presents a novel solution solving a non-standard
optimal LQR control design problem with a cost function
that maximizes directly the electrical power generated by the
MMLA actuator of a full-car suspension system, rather than
being the standard integral of the sum of state and input
norms. Additionally, a bound on the Ride Index was taken into
consideration as a secondary objective to be optimized together
with the energy harvesting requirement in order to demonstrate
how the LQR synthesis problem can handle multiobjective
optimization problems using the ε-constraints approach [2].
The proposed optimal LQR controller is contrasted with
the H2 optimal MIPC controller proposed in [3] and with
the viscous regenerative damper (RD) control strategy that
behaves mimicking a standard passive viscous damper. The
simulations confirm the advantages of the proposed solution
over the previous ones.

The paper is organized as follows. Section II presents the
full car model and regenerative suspension configuration. In
Section III the Linear Quadratic Regulator is reformulated
by using a new objective function that maximizes the power.

Finally, numerical results are presented in Section IV and some
conclusions end the paper.

II. THE FULL CAR MODEL AND REGENERATIVE
SUSPENSION CONFIGURATION

We consider the following model [3]:

Irϕ̈s = −k f t f (zs1 − zu1)+ k f t f (zs2 − zu2)− krtr(zs3 − zu3)
+krtr(zs4 − zu4)+ t f f1 − t f f2 + tr f3 − tr f4

Ipθ̈s = −k f a(zs1 − zu1)− k f a(zs2 − zu2)+ krb(zs3 − zu3)
+krb(zs4 − zu4)+a f1 +a f2 −b f3 −b f4

msz̈s = −k f (zs1 − zu1)− k f (zs2 − zu2)− kr(zs3 − zu3)
−kr(zs4 − zu4)+ f1 + f2 + f3 + f4

(1)
where:

• Ip and Ir correspond to the pitch and roll motions;
• fi(t), i = 1, . . . ,4 are the force actuators;

III. LINEAR QUADRATIC FORMULATION

A. State-space realization
Let the regenerative suspension system be model by the

following state-space representation

ẋ(t) = Ax(t)+Bu(t)+Ew(t)
z(t) = Czx(t)+Dzuu(t)+Fzww(t) (2)

where system matrices can be found in the extended work.
In (2), x(t) denotes the system state, u(t) the input, z(t)

the objective vector and w(t) the zero-mean, unitary variance
white noise that models the road profile zr. In particular, we
have the following system vectors

x =


zr
zs
żs
zu
żu

 , u = i, z = z̈s (3)

In order to quantify the riding comfort adequately, the above state-
space representation is extended by introducing dynamic weighting
filters to better shape in frequency the vector z according to the ISO-
2631 standard. Denoting by (Ak,Bk,Ck,Dk) the state-space represen-
tation of the filter Wk(s)

ẋk = Akxk +Bkz
z̃ = Ckxk +Dkz

with state xk, it is possible to introduce the following augmented state

xg =
[
xT xT

k

]T
(4)

All augmented matrices can be found in the extended work.



Average Electrical Power
RI = 0.25 RI = 0.47 RI = 0.70

RD 35.18*4[W] 35.18*4[W] 35.18*4[W]
H2 MIPC 40.52*4[W] 43.03*4[W] 48.84*4[W]

LQR 56.1*4[W] 56.47*4[W] 56.55*4[W]

TABLE I
AVERAGE ELECTRICAL POWER WITH RI = 0.25, RI = 0.47 AND RI = 0.70

B. The constrained LQR approach via LMIs
The electrical power is negative ( the actuator behaves as a

generator) so we want to minimize it to obtain more power. The
following cost index can be considered

J = ε(vT
em f i+Rai2) = ε(2vT

em f Nai+ iT Rai) (5)

where vem f is the back EMF voltage and ε(.) is the expected value
under stationary conditions. By identification, Na = 0.5 and Ra is the
armature’s resistance.

vem f = Kv(żs − żu) (6)
i = −KLQx (7)

żs − żu = GT x,with GT = [0010 −10000] (8)

After all developments, we have the following LMI.

[PLQC,YLQC] = argminP,Y,X (tr(−2KvGNaY )+Ra ∗ tr(X))
s.t

P > 0;
AgP−BguY +PAT

g −Y T BT
gu < 0;[

X Y
Y T P

]
> 0

 AgP−BguY +(AgP−BguY )T Bgw (CgzP−DgzuY )T

BT
gw −α∗ I DT

gzw
CgzP−DgzuY Dgzw −α∗ I

< 0

(9)
If a solution exists, the optimal controller is given by

KLQC = YLQCP−1
LQC (10)

IV. SIMULATIONS

The control approaches will be compared on the same full car
model, actuator and driving scenario. The vehicle chosen is a standard
class C car. All simulations parameters can be found in the extended
paper.

Figure 1 depicts the acceleration z̈s(t), actuation current u(t),
harvested electrical power Pe(t) and harvested electrical energy Ee(t)
of the three control laws. The LQR without condition on the Ride
Index gives us a power and energy of 57.89W and 8684J respectively.
The Viscous Regenerative damper gives us a power and energy of
35.18W and 5277J respectively.

We note that the unconstrained LQR achieves the greatest energy
harvesting among the three control laws. It is followed by the MIPC
H2 in terms of energy harvesting. However, the comfort provided by
the LQR is the worst.

Let us improve the results by adding an adequate constraint on the
Ride Index with the constrained LQR control strategy. For reason of
brievety, we can’t present the plots for all wheels and for the different
RI but the average powers and energies are in Table I and II.

V. CONCLUSIONS

This paper has proposed a comparative study between three control
laws: regenerative damper, MIPC H2 and LQR. The results obtained
show that the LQR control with this particular cost achieves greater
energy harvesting than the MIPC H2 and the regenerative damper.
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Fig. 1. Without condition on RI - Acceleration z̈s(t), actuation current u(t),
harvested electrical power Pe(t) and harvested electrical energy Ee(t) for a
single wheel

Average Electrical Energy
RI = 0.25 RI = 0.47 RI = 0.70

RD 5277*4[J] 5277*4[J] 5277*4[J]
H2 MIPC 6072*4 [J] 6455*4[J] 7326*4[J]

LQR 8415*4[J] 8470*4[J] 8482*4[J]

TABLE II
AVERAGE ELECTRICAL ENERGY WITH RI = 0.25, RI = 0.47 AND RI = 0.70

The condition on the Ride index constrains the acceleration provided
by the control law at an acceptable result. Future work will deal with
the application of this approach to other systems such as Marine Wave
Energy Converters which need less control objectives than cars.
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Abstract—Electrolyte-gated carbon nanotube field-effect tran-
sistors (EG-CNTFETs) offer great promise for biosensing, but
face instability challenges. This work demonstrates that incor-
porating a lipophilic membrane on the semiconducting chan-
nel reduces stabilization time to 34 minutes, compared to an
hour for state-of-the-art devices. The membrane also causes
the on-off ratio to increase over time, from 9.76 ± 4.16 to
24.55±20.99 in one hour, while devices without the membrane
show a decrease. Moreover, the sensor performance remains
robust for up to 12 hours and 5 repeated uses. As proof-of-
concept, the devices were functionalized with an ion-selective
membrane for ammonium ion, achieving a linear detection range
from 0.01 mM to 100 mM. These improvements not only
advance EG-CNTFET-based biosensors for food, biomedical, and
environmental applications, but also open up possibilities for their
integration into robotic autonomous systems, e.g., for remote
monitoring in dangerous environments, reducing risks to human
operators.

Index Terms—Technology, Manufacturing, Sensors

I. INTRODUCTION

Electrolyte-gated field-effect transistors (EG-FETs) replace
the traditional dielectric material with an electrolyte, forming
electric double layers (EDLs) at the electrolyte-semiconductor
and gate-electrolyte interfaces upon voltage application [1].
Due to the low thickness of the EDLs, the induced capacitance
is much higher than that of traditional dielectrics, allowing to
maintain the voltage low and still induce significant current
amplification [2]. The presence of the electrolyte and the low
voltage measurements make the EG-FET the perfect candidate
to work with biological samples, e.g., for health, food, and
environmental monitoring. Carbon nanotubes (CNTs), with
their high carrier mobility and flexibility, are increasingly
used in EG-FETs, paving the way for advanced EG-CNTFET-
based biosensors [2]. As biosensors, EG-CNTFETs hold great
potential for integration in autonomous robots, for example
for environmental monitoring, where their high sensitivity
enables the detection of trace pollutants and toxins. Addi-
tionally, their low voltage operation is suitable for remote
battery-powered systems, e.g., autonomous robots deployed in
hard-to-reach and potentially dangerous environments, such
as those used in disaster response [3]. Moreover, thanks to
their flexibility, EG-CNTFETs could be integrated into soft
robots to sense environmental changes and trigger chemical
actuators, causing the robot to move or change shape in

response [4]. This contribution tackles the issues of stability in
EG-CNTFET biosensors, as we present an efficient and cost-
effective method to prevent CNT degradation by encapsulating
the single-walled carbon nanotube (SWCNT) channel with a
lipophilic membrane. This approach enhances resilience to
environmental and electrical stress and reduces stabilization
time to 34 minutes, which is half the time of current state-
of-the-art devices [5]. As a proof-of-concept, we show that
our encapsulated EG-CNTFETs can detect ammonium ions
(NH+

4 ) in concentrations ranging from 0.01 to 100 mM by
adding an ion-selective membrane to the gate electrode.

II. MATERIALS AND METHODS

The planar EG-CNTFET (Figure 1a) was fabricated us-
ing the protocol from [6]. A SWCNT ink in sodium car-
boxymethyl cellulose (CMC) surfactant was then spray-
deposited on the interdigitated electrodes (IDEs) area, fol-
lowing the optimized protocol developed by [7]. A lipophilic
membrane (“Membrane A” from [8]) was dropcasted in two
layers (first 8 µL, then 7 µL) to ensure coverage of the 8.9mm2

IDE area. An ammonium-selective membrane containing non-
actin ionophore, prepared in accordance with the recipe in
[9], was used to functionalize the gate; 10 µL of the membrane
were deposited on the electrode and dried for 12 hours at 4 ◦C.
A conditioning step in 1mM ammonium in 0.1x PBS in ambi-
ent conditions followed. Morphological characterization of the
fabricated devices included atomic force microscopy, scanning
electron microscopy, and profilometry to assess SWCNT dis-
tribution and membrane thickness. Electrical characterization
and stability assessment involved measuring the resistance
between source and drain (RDS) and repeatedly collecting
40 transfer and output characteristics using a semiconductor
device parameter analyzer. Evaluation of sensor performance
was conducted by dropcasting NH+

4 in the chamber every 10
minutes to test 5 different concentrations: 0.01mM, 0.1mM,
1mM, 10mM and 100mM in 0.1x phosphate buffer saline
(PBS). The NH+

4 measurements were carried out recording
the current in output (IDS) in response to a fixed bias, namely
gate voltage VGS=−0.8V and drain voltage VDS=−0.1V.

III. RESULTS

With this study we demonstrated the stability of EG-
CNTFETs with an added lipophilic membrane. Initial char-



Substrate
Electrodes
Lipophilic membrane
NH4+ membrane
PBS
Carbon nanotubes

D

S
G

VD

VG

a)

25

50

75

100

0 20 40 60
Time [min]

No
rm

al
iz

ed
 c

ur
re

nt
 [%

] Membrane
No membrane

b)

0.0

0.2

0.4

0.6

10−2 10−1 100 101 102

NH4
+ concentration [mM]

I D
S*

@
V G

S=
−0

.8
V

[µ
A

]

0.0

0.2

0.4

0.6

10−2 10−1 100 101 102

NH4
+ concentration [mM]

I D
S*

@
V G

S=
−0

.8
V

[µ
A

] y = 0.27 + 0.14x
R2 = 0.94

c)

Figure 1: a) Scheme of EG-CNTFET biosensor. b) Comparison of normalized ION trends for two devices: the one without
the membrane (red) exhibits a steady decrease, while the one with membrane encapsulation (blue) initially decreases before
increasing again. c) Calibration curve of the biosensor for NH+

4 detection. The sensor exhibits good linearity over the range
of concentrations tested.

acterization revealed a dense, uniformly dispersed random
network of SWCNTs and an optimal membrane thickness
of 45 µm. Figure 1b depicts how the normalized ON current
(ION), i.e., the IDS detected at VGS=−0.8V normalized over
the ON current of the first recorded transfer; the curves
obtained show how the current in the bare devices declines
in a steep linear way (n = 3), while encapsulated ones
stabilize within 33.8± 12.9 minutes (n = 6). Albeit showing
a lower current amplitude, encapsulated devices remained
stable for up to 12 hours and could be reused 5 times.
The on/off ratio was also calculated to evaluate variations in
performance over time: bare devices showed a decrease from
88.7 ± 29.9 to 61.1 ± 23.9. Encapsulated devices, however,
exhibited improving stability, with the on-off ratio increasing
from 9.76±4.16 to 24.55±20.99 in one hour. As a proof-of-
concept, an ion-selective membrane with nonactin was used
to detect ammonium, showing a linear range from 0.01 to
100mM with a 94.71% coefficient of determination.

IV. CONCLUSION

This work highlights how SWCNTs instability was tackled
by encapsulating the channel in a lipophilic membrane; this
lead to stabilization in 34 minutes and increased resilience,
allowing measurements up to 12 hours and 5 separate times.
The functionality as biosensor was demonstrated by the adding
an ion-selective membrane on the gate, leading to the detection
of NH+

4 in the concentration range typically present in sweat.
Our easy and inexpensive approach to achieving highly stable
EG-CNTFETs represents a powerful strategy for implementing
such devices in many biosensing applications that are not
limited to ion-selective membranes. Additionally, our system
is well-suited for integration into robotic platforms, thanks to
the reusability feature, which is not possible with standard
bare devices. This facilitates the full automation of sample
collection and analysis, reducing variability in measurements
and leading to more reliable results.
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Batch manufacturing process remains the primary method for industrial pro-
duction. The goals in a batch process are: (I) Reliability, by minimizing op-
erational risks; and (II) Efficiency, providing high production standards while
reducing the production cost. However, it is essential to consider and closely
monitor the significant drawbacks associated with a batch manufacturing pro-
cess: (I) Complex and dynamic systems that are highly susceptible to disruptions
or deviations in each phase; (II) Quality control issues within a batch can lead
to entire batches being rejected; and (III) Inconsistent product quality between
batches can lead to inconsistent product quality if the manufacturing process is
not optimized. The proposed method involves the following steps:

– Data analysis and preprocessing: Golden batches have been analyzed and
Principal Component Analysis (PCA) has been used. PCA is a widely-used
method that transforms the original dataset into a set of uncorrelated vari-
ables known as Principal Components (PCs) [1]. By applying PCA to a 2D
matrix—where each batch, consisting of J time points and K features, is
stacked vertically—patterns within the data can be identified and trajecto-
ries can be traced.

– Training phase: A non-linear approach, specifically employing an LSTM
model, has been employed for time-series prediction. LSTM models are adept
at detecting abnormal behavior in non-linear systems by analyzing NOC
batches and calculating metrics to identify deviations [2]. Moreover, LSTMs
may handle scenarios with multi-step inputs or outputs as well. By training
individual LSTM models on each batch within the dataset, a collection of
models is created, each capturing unique patterns specific to its batch. Dur-
ing training, these models periodically average their learned parameters to
form a global model. This final model incorporates the key characteristics
from all individual models, leading to more accurate predictions compared
to training a single model on the entire dataset [3].

Experimental results shows that by employing a strategic training of sev-
eral models for each training batch, it may enhance the evaluation of historical
batches using pre-built models and the online monitoring of batches through
single data point prediction. Additionally, an optimization approach could be
beneficial for finding the optimal hyper-parameters for the given dataset.



Fig. 1: Projection of batch processes to Principal Components. Each colored line
represents a batch. PCA correctly identify similar pattern on each batch.

Fig. 2: Prediction vs Ground Truth of a test batch with 5 input steps and 1
output step.
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An Adaptive Heuristic Approach to Wood Sawing Optimization
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Abstract— Automating and optimizing wood processing have
been of significant importance to improve efficiency in sawmills.
This study presents a quality-driven constructive heuristic
approach for solving the live sawing optimization problem.
This deals with cutting rectangular boards from cylindrical logs
with circular cross sections. The heuristic is adaptive regarding
the existence of defects inside the logs that can be detectable
after each cut. Thus, the cutting pattern is updated after each
cut with new scanned information about internal defects in
the log. The problem is a two-dimensional strip bin-packing
problem with the objective of orthogonal packing of a given
set of rectangular items into a set of strips inside a circle to
maximize the sawing yield. We apply a combination of sorting,
placement, and searching policies, along with an online strategy
to build a feasible cutting that enables guillotine cuts and quality
consideration for wood sawing. Our approach outperforms the
current state of the art in improving sawing efficiency.

I. INTRODUCTION

The integration of automation and optimization in wood
processing has recently gained more attention for improving
efficiency. Advances in mathematical modeling, optimization
algorithms, and control techniques have enabled modern
sawmills to reduce costs and increase yields. Sawing
optimization, which determines the optimal pattern for
cutting logs to maximize yield and minimize losses, is
fundamental to wood processing [1].

The need to optimize wood sawing has driven innovations
in defect detection and yield improvement. For example, [2]
used linear programming to maximize yields for different
product sizes. Due to geometric constraints, mixed-integer
linear and nonlinear programming were later used for
more accurate models [3]. However, high computational
complexity limits their scalability, leading to heuristic
approaches. The bottom-left (BL) and bottom-left-fill (BLF)
heuristics are popular for bin-packing problems, offering
practical solutions despite limitations in handling circular
containers and large-scale problems [4].

Scanners are essential for log sawing optimization to
detect geometry and defects. While costly scanners detect
internal defects, smaller sawmills favor low-cost laser
scanners, such as the one in Fig. 1. However, these affordable
scanners only detect surface defects after each cut by
scanning the open face.

Although previous research studies have made progress
toward the optimization of wood sawing, the integration of
online defect detection concerning quality sawing algorithms
which use affordable laser scanners has not been researched
so far. This research fills in this gap by presenting an adaptive
heuristic quality-driven algorithm which is based on a variant
of the BLF algorithm, while updating the cutting pattern in

a dynamic way with online detection of inside defects. By
combining sorting, placement, and searching policies and an
online defect detection strategy, this approach establishes an
important robust solution for wood sawing operations.

II. THE PROPOSED ONLINE ADAPTIVE HEURISTIC FOR
WOOD SAWING

Our approach combines the principles of a variant of the BLF
heuristic with online defect detection. The cutting patterns
are dynamically updated based on the defect data available
at the time so as to maximize the number and value of
the rectangles packed within the circle cross-section of the
log. We modify the original BLF heuristic for strip cutting
capability due to the constraints of sawing machines which
only allows them for guillotine cuts. (see Fig. 2 for a visual
representation).
A. Priority Lists
We use three priority lists of products: P1, P2, and P3, with
P1 being of the highest priority due to urgent customer orders
that need to be delivered. The first to be fitted are rectangles
in P1. If a rectangle in P1 cannot be fit, then an inspection
is made in P2. Products in P1 and P2 must be free of any
defects. This is followed by P3. Rectangles from P3 are
allowed to be with some defective areas.
B. A Variant of the BLF Algorithm
The BLF algorithm proposed in this study fills each rectangle
into the lowest and leftmost available position of each strips.
The BLF algorithm can also fill the gaps by immediately
searching for feasible rectangles to fill gaps as soon as any
gap is created, thereby improving the efficiency of packing
without memorizing many points.
C. Regions and Scenarios
The sawing pattern generation is divided into three regions:
Region 1, which is a central strip where the largest rectangles

Fig. 1: Defect detection on wood surfaces using laser scanners.



are placed; Region 2, which is filled with the remaining
rectangles, and Region 3, where the processing is again
similar to Region 2 but after a 180° rotation of the log.
Each region follows specific placement scenarios: Scenario 1
places rectangles if the height difference between successive
rectangles is equal or less than a small threshold, while
Scenario 2 searches for smaller rectangles to fill where
significant gaps exist, and Scenario 3 leaves gaps as waste
if no suitable rectangles are found.
D. Adaptive Online Update Strategy
The adaptive heuristic strategy starts with no consideration
of defects at the generation of the initial cutting pattern
using the first scan information of the outer hull of the log,
providing log dimensions. After the first cut (open face),
the log surface is scanned again to detect any defects on the
surface. If it finds defects, the whole area around each defect
is considered as a defective area in the search space. This
area is defined as a rectangle that encompasses the defect
with a small defined margin to ensure the entire defect is
within the marked area (the red area in Fig. 2). This area can
be filled only by the products from the least-priority list P3,
where defects are allowed in the products. The heuristic is
then re-run considering these defective areas to create a new
cutting pattern with the updated condition. If the defective
area persists in the later cuts as well, the algorithm continues
with the existing pattern. In the case of new defects detected,
new defective areas are defined and the heuristic re-runs to
come up with a new pattern again. This iterative process will
now ensure every cut takes into account defects to optimize
quality and yield for sawn timber.

III. SIMULATION AND DISCUSSION

To evaluate our proposed online adaptive heuristic, we
conducted simulations on various test problems using inputs
such as rectangle dimensions, priority lists (P1, P2, P3)
with product values, and the log’s cross-sectional size. The
simulations were implemented in Python on a personal
computer with an Intel Core i5-8365U @ 1.6 GHz CPU, 16
GB RAM, running Windows 10 (64-bit), with parameters
from [1]. Table I reports the results for different problem
sizes, i.e., Small with r = 10 and N = 8, Medium with r = 30
and N = 15, and Large with r = 50 and N = 35, where r is the
radius of the circle and N is the number of rectangles. The
final yield (ratio of selected rectangle area to circle area),
price of products in the presence of log defects, and total
running time of the program are presented. We compared
the traditional BL method, our offline heuristic method, and
our adaptive online heuristic method.

The results show that our adaptive online heuristic yields
almost similar results to the offline heuristic but with higher
final product values due to dynamic adaptation with defect
detection, ensuring better quality outputs. Also, the running
time remains reasonable, making it suitable for real industrial
environments.

IV. CONCLUSIONS

This study introduced an adaptive heuristic approach
for wood sawing optimization. The method combines
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Fig. 2: The strategy for placement and defect updating.

TABLE I: The comparison of results.

Method Problem Size Yield (%) Price (AC) Running Time (s)

Traditional BL Small 52 32 0.22
Medium 78 110 0.54

Large 84 310 0.69

Offline Heuristic Small 59 40 0.34
Medium 84 124 0.55

Large 91 331 0.70

Adaptive Online
Heuristic

Small 57 48 0.61
Medium 84 135 0.79

Large 90 344 0.98

online defect detection with an improved variant of the
bottom-left-fill (BLF) heuristic. The method dynamically
updates cutting patterns to increase yield, product quality
and value. The simulation results showed that our heuristic
not only maintains high yield efficiency but also enhances the
final product value in reasonable computation times, proving
its effectiveness and practical applicability in the presence of
wood defects.
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Societal-scale challenges like climate change mitigation and adaptation, pandemic control and health-
care, and the transition towards Smart Infrastructure Systems in sectors like energy and transportation
are dominant drivers for societal transformation in the upcoming decades. The systems involved in those
challenges share three crucial features which must be accounted for when facing them:

• Large scale: The systems in question are intrinsically large-scale and remarkably complex due to
the humongous number of decision variables.

• Multi-agent: The systems comprise diverse” agents”, decision-making entities with partial infor-
mation about the global system who can only act on individual decisions. Agents communicate
through a communication network to drift the system towards an operating point that maximises
the participant’s benefit.

• Uncertainty handling: These systems are partially known and uncertain by nature. The agents
must make decisions in a complex, possibly time-varying, environment with partial information
on the effect of their decisions on the global system.

The renewed interest in distributed and multi-agent optimisation observed in these years should be
no surprise. This framework is suitable for addressing all the features that were previously cited.

Our work focuses on developing computationally efficient dual-based distributed optimization al-
gorithms capable of handling uncertain global coupling constraints, which naturally arise in many dis-
tributed systems, including resource sharing.

We consider the following distributed optimization program:

P : min{xi}mi=1

m∑
i=1

fi(xi)

s.t.

xi ∈ Xi ∀i = 1..m

P{δ ∈ ∆ :
m∑
i=1

gi(xi, δ) > 0} < ϵ

(1)

Where each agent i = 1, 2 . . . m can act on a private set of control variables xi, and minimize its cost
function fi, while satisfying both local constraints xi ∈ Xi and a global uncertain coupling constraint:

P{δ ∈ ∆ :
m∑
i=1

gi(x
∗
i , δ) > 0} < ϵ (2)

An uncertain coupling constraint is a powerful tool for modelling constraints which unpredictably act on
the multi-agent system. The coupling constraint generally cannot be satisfied deterministically without
diminishing the system’s performance; by controlling the risk level ϵ, it is possible to tune the risk-
performance tradeoff. We use the scenario approach to handle uncertainty and solve chance-constrained
optimization problems. This approach allows us to find a solution that satisfies the constraints with a
predefined confidence level β, provided that the number of scenarios is chosen to satisfy 3:

ϵ̄ = 1−
N−ρ

√
β(
N
d

) (3)

1



where the number ρ is the best-known bound of the Helly’s dimension of the problem.
To decrease the number of required scenarios, the affine geometry of the chance-constraint (2) is

exploited to reduce the upper-bound for its Helly dimension [1] [2]. We proved that under some special
structures of (2) the number ρ doesn’t depend on the number of agents m.

Leveraging on the problem’s separable structure and a Helly’s bound which doesn’t depend on m, we
develop a scalable distributed dual-decomposition scheme [3], where each agent solves a local problem
and communicates information to its neighbours over a communication graph to iteratively steer all the
agents’ private solutions to the global one without disclosing agents’ private information.

The methodology is applied to the distributed optimization of aggregated micro-grids, a relevant
example of a large-scale multi-agent system with uncertain coupling constraints.

In microgrids, single Distributed Energy Resources (DER) fail to influence the power grid alone;
studying methods to aggregate small-capacity generators and storage systems to provide market capabil-
ities to such resources is crucial. Groups of DERs and loads form microgrids that can be aggregated into
a single virtual power plant (VPP), a grid-connected entity capable of participating in the energy market,
as shown in figure 1.

The VPP must optimize the economics of each microgrid while satisfying power balance constraints
over the entire aggregation. The power balance is uncertain due to the stochastic nature of the microgrid’s
assets. Examples of uncertainty sources in the power balance are solar production and load consump-
tion, while structural uncertainty elements are found in the modelling of batteries and generators. Also,
communication uncertainties such as delays and asset unavailability are present in the system.

A preliminary result is tested with four microgrids over a time-varying communication network. We
choose a risk factor ϵ = 0.2 and a confidence β = 1e − 6, resulting in N = 258 required scenarios.
After optimising for xi, we test it on M = 1300 unseen scenarios and compute the violation probability
V (x∗) = 8.92%, which is lower than the risk factor chosen ϵ = 20%

We are collaborating with Hitachi Energy to develop a VPP benchmark comprised of three virtual
machines communicating over the cloud via HTTPS protocol to test the impact of real-time communi-
cation in distributed uncertain algorithms for microgrid applications.

Fig. 1: On-Cloud microgrid aggregation.
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InDi: An Indirect/Direct method for Optimal
Control Problems
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Abstract—Literature shows that direct methods are the most
popular approach for solving optimal control problems due to
their robustness and effective constraint handling. Conversely,
indirect methods, though more challenging to implement, offer
greater accuracy by deriving necessary optimality conditions
via Pontryagin’s Maximum Principle and solving two-point
boundary value problems. These methods provide deeper insights
into the problem structure, crucial for theoretical analysis and
efficient algorithms development. This study demonstrates that it
is possible to construct numerical approximations that leverage
both direct and indirect methods, inheriting the advantages and
properties of each.

Index Terms—Optimal Control, Direct Methods, Indirect
Methods, Numerical Optimization

Optimal control problems are extensively found in various
fields of engineering and have been applied successfully in an
increasing number of cases [7]–[10], [12], [13]. These prob-
lems involve optimizing a performance criterion, often com-
plicated by high dimensionality and nonlinearity. Literature
shows that direct methods are the most popular approaches,
discretizing the problem into a constrained minimization task
solvable with numerical optimization techniques. Their popu-
larity stems from robustness, effective constraint handling, and
powerful computational tools. Conversely, indirect methods
provide more accurate solutions by deriving optimality condi-
tions using Pontryagin’s Maximum Principle and solving two-
point boundary value problems. Although more challenging,
indirect methods offer deeper insights into problem structure
and optimal solutions, aiding theoretical analysis and efficient
algorithm development.

• Direct methods transcribe continuous optimal control
problems into a finite-dimensional nonlinear optimiza-
tion problem (NLP). This allows the use of powerful
numerical optimization techniques, solved by standard
algorithms like IPOPTand DIDO, or custom-tailored NLP
solvers.
Direct methods are versatile and robust, with Runge-
Kutta and Pseudo-Spectral methods being particularly
efficient and accurate. Runge-Kutta uses fixed-step in-
tegration, while Pseudo-Spectral methods employ high-
order polynomials for spectral collocation to discretize
control and state trajectories.
Various software packages support these methods, each
with unique features and capabilities. Popular options
include: GPOPS-II, ICLOCS2, ACADOS, CasADi, fal-
con.m, DIDO, Forces Pro, Pyomo, Gekko.

• Indirect methods, based on the calculus of variations
and Pontryagin’s Principle of Maximum, offer a unique
approach to optimal control by providing necessary op-
timality conditions through Boundary Value Problems
(BVPs) that minimize the Hamiltonian. These methods
derive differential equations and boundary conditions to
yield the optimal control and state trajectories.
Although theoretically strong, indirect methods face crit-
icism due to the complex symbolic manipulations re-
quired [2]. Recent advancements in Computer Algebra
Systems (CAS) and automatic differentiation libraries
have alleviated these challenges, automating much of the
symbolic computation.
A persistent challenge in indirect methods is handling
switching points, where optimal control strategies change
abruptly. Strategies like penalty formulations and interior
point approaches effectively address this issue, facilitating
solutions for complex engineering problems with switch-
ing dynamics [4], [5].
Despite advancements, practical software implementa-
tions of indirect methods are limited. Notable exceptions
include Beluga, which solves optimal control problems
using advanced numerical techniques, and PINS [4],
which provides robust solutions for problems with com-
plex dynamics and constraints.

This work introduces a novel numerical method tailored for
solving optimal control problems, which can be interpreted as
stemming from either a direct or an indirect approach.

The quest to connect the solutions obtained from the dis-
cretization of direct methods with those from indirect methods
is not new. The principle of covector mapping (CMP) [11] has
demonstrated that a mapping can make the solution of direct
methods equivalent to that of indirect methods when using
pseudospectral collocation techniques.

Similarly to CMP, this study introduces a mapping approach
for the finite difference scheme that links the discretized
equations of indirect methods with those of direct transcription
applied to implicit dynamics. Revisiting the discretization of
the indirect method as one derived from direct transcrip-
tion, allows for the hybridization of solution techniques and
algorithms from both families of methods, leveraging their
respective strengths.

This innovative formulation shows great promise for indirect
methods, facilitating the adoption of regularization techniques
typically associated with direct approaches. This is achieved



Fig. 1. Diagram direct/indirect methods. Usually not commutative.

while retaining the explicit solution of the control as a function
of the states and co-states within a bi-level optimization
framework, significantly enhancing numerical performance.

The flexible formulation introduced here enables the incor-
poration of numerical techniques derived from direct methods,
such as proximal methods, aiming to develop a robust solver
that maintains the efficient structure of Newton’s damped
method used in solving indirect methods.

Moreover, the proposed mapping extends its applicability to
encompass implicit dynamics, thereby providing a comprehen-
sive solution strategy for a broader range of optimal control
problems and applications.

A comparison of indirect only and direct only approach
for some selected optimal control problem is presented in
reference [5] while [3] present an application with the new
proposed approach.
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A control theory approach to convex optimization with inequality
constraints

V. Cerone, S. M. Fosson, S. Pirrera, D. Regruto

Abstract— We propose a novel continuous-time algorithm for
inequality-constrained strongly convex optimization inspired by
proportional-integral control. Compared to the popular primal-
dual gradient dynamics, our approach simplifies the proof of
exponential convergence. Moreover, through several examples,
we show that the proposed algorithm may converge faster than
primal-dual gradient dynamics.

I. INTRODUCTION

Primal-dual gradient dynamics (PDGD) is a well-
established continuous-time algorithm that solves con-
strained optimization problems. Introduced in [1], it consists
of a primal-descent, dual-ascent gradient method achieving
the saddle point of the Lagrangian of the problem.

We have recently witnessed a renewed interest in PDGD
thanks to its effectiveness in several engineering applications
and control problems. In recent literature, several works
have addressed the study of the stability and convergence of
PDGD. This algorithm is globally exponentially convergent
for smooth, strongly convex problems, see, e.g., [2].

This paper proposes a novel continuous-time algorithm
for smooth, strongly convex problems with inequality con-
straints. By starting from the definition of a suitable aug-
mented Lagrangian, the key idea is to control the dynamics
of the primal variable through the Lagrange multipliers of
the problem by implementing a feedback control method
inspired by proportional-integral (PI) control. The contribu-
tion of the paper is twofold. On the one hand, we prove the
exponential convergence of the proposed method for strongly
convex functions. On the other hand, we show its practical
effectiveness through numerical simulations.

This work partially extends the framework proposed in [3],
where we develop a feedback control approach for equality-
constrained problems, specializing in PI control and feedback
linearization. In this paper, we retrieve the key ideas of the PI
control algorithm proposed in [3], and we develop a novel PI
approach for the case of inequality constraints. In particular,
this extension requires a novel convergence analysis starting
from a peculiar augmented Lagrangian.

II. PROBLEM FORMULATION

Let f : Rn → R be a smooth, strongly convex function.
We consider the constrained optimization problem

min
x∈Rn

f(x)

s.t. h(x) = Cx− d ≤ 0
(1)

The authors are with the Dipartimento di Automatica e Informatica,
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where C ∈ Rm,n, d ∈ Rm and “≤” denotes the compo-
nentwise inequality. We consider the following augmented
Lagrangian, used, e.g., in [4], [2], to deal with the inequality
constraints:

L(x, λ) = f(x) + g(x, λ) (2)

where we define g : Rn+m → R as

g(x, λ) =
m∑
j=1

gj(x, λj) with

gj(x, λj) =

=


λjhj(x) +

ρ

2
h2
j (x) if hj(x) ≥ −λj

ρ
;

− 1

2ρ
λ2
j otherwise

(3)

where ρ > 0 is a design hyperparameter.
As noticed in [2], the saddle point of (2)-(3) corresponds

to the saddle point of the standard Lagrangian; see, e.g., [4,
Chapter 3] for details. As shown in [2, Eq. (9)], PDGD for
problem (2)-(3) corresponds to the dynamic system

ẋ = −∇xL(x, λ) = −∇f(x)−∇xg(x, λ)

λ̇ = η∇λg(x, λ), η > 0.
(4)

In [2], the authors show that PDGD has a unique equi-
librium point that satisfies the first-order KKT conditions
for (1). Furthermore, PDGD is globally exponentially con-
vergent. The computed convergence rate τineq depends on
several constants; therefore, it is hard to assess it explicitly.

As to strongly convex problems with h(x) = 0, in [3], we
show that PDGD corresponds to an integral control system
that regulates h(x) to zero, based on standard Lagrangian for
equality constraints problem. In this system, the Lagrange
multipliers λ play the role of the control input. In [3], we
design a PI control, which usually has a faster convergence
rate than PDGD.

III. PROPOSED METHOD: CONTROLLED
MULTIPLIERS

This section proposes a novel PI control approach to solve
(1). A natural extension of the PI approach proposed in [3]
would be

ẋ = −∇xL(x, λ) = −∇f(x)−∇xg(x, λ)

λ̇ = Ki∇λg(x, λ) +Kp
d

dt
∇λg(x, λ)

(5)



Proving that (5) is exponentially convergent is challenging.
For this motivation, we modify (5) as follows:

ẋ = −∇xL(x, λ) = −∇f(x)−∇xg(x, λ)

λ̇ = Ki∇λg(x, λ) +KpJh(x)ẋ.
(6)

We replace d
dt∇λg(x, λ) by Jh(x)ẋ. The difference between

the proposed approach and PDGD in (4) and (6) is in the
presence of the additional term KpJh(x)ẋ in the dynamics
of λ.

IV. CONVERGENCE ANALYSIS

In this section, we analyse the convergence of the dynamic
system (6). We define

z(t) := (x(t)⊤, λ(t)⊤)⊤ (7)

and
z⋆ := (x⋆⊤, λ⋆⊤)⊤ (8)

is the equilibrium point of (6), which corresponds to a saddle
point of L(x, λ). The following result holds.

Proposition 1: The equilibrium point of (6) satisfies the
KKT conditions for problem (1).

Proof: (Sketch). The result follows from the definition
of equilibrium point and some algebraic manipulations.

Theorem 1 (Global exponential convergence): Let us as-
sume that C is full rank and there exist 0 < c ≤ c such
that cI ⪯ CC⊤ ⪯ cI . Let ρ < c−1. Then, there exist real
positive constants α1 and α2 such that

∥x(t)− x⋆∥2 ≤ α1e
− 1

2µt, ∥λ(t)− λ⋆∥2 ≤ α2e
− 1

2µt (9)

where

µ ≤ min

{
1

2
Kpc,

2Kig −Kpg
2

Ki

}
(10)

where 0 < g ≤ g depends on f(x) and h(x) in (1).
Proof: (Sketch). We check that V

(
z(t)

)
=

(
z(t) −

z⋆
)⊤

P
(
z(t) − z⋆

)
where P :=

(
σIn 0
0 Im

)
∈

Rm+n,m+n, σ > 0 is a Lyapunov function satisfying
V̇ (z(t)) ≤ −µV (z(t)) for the considered dynamics.

Remark 1: A theoretical comparison of the convergence
rates µ and τineq in [2] is challenging due to the fact τineq
depends on many constants that are not easy to assess.
Conversely, we can estimate µ straightforwardly.

Remark 2: The proof of Theorem 1 is simpler than the
proof in [2] because of the diagonal form of the selected
Lyapunov function.

A. Convergence rate: illustrative example to compare PI and
PDGD

We propose a simple illustrative example to compare
the convergence rates of (4) and (6). Consider the scalar
quadratic optimization problem minx∈R

1
2wx

2 subject to x ≤
0, where w > 0.

The closed-loop dynamics of both PDGD and PI control
correspond to a switched LTI system with two modes. By
evaluating the state space matrices in each mode, we con-
clude that, in the second mode, PI and PDGD enjoy the same

rate of convergence. Concerning the first mode, we notice
that for PDGD it is not possible to increase the convergence
rate beyond w + ρ. Conversely, for PI, the eigenvalues are
complex conjugate by choosing Ki sufficiently large, and the
convergence rate is Kp + w + ρ.

V. NUMERICAL EXAMPLES
A. Example 1: Quadratic programming

In this simulation, we consider a strongly convex quadratic
programming (QP) with randomly generated vectors and
matrices. We set dimensions n = 50 and m = 45, and
parameters Ki = η = 1 and Kp = −0.7.

We perform 100 random runs with different realizations,
and we observe that PI requires fewer iterations than PDGD
in all the runs. In Table V-A, we report some statistics
comparing the convergence speed of PI and that of PDGD.

mean standard deviation worst case
N PDGD 8128.3 491.9 9361
N PI 6903.2 312.1 7613
T PDGD 1.23× 10−1 8.04× 10−3 1.53× 10−1

T PI 1.02× 10−1 4.74× 10−3 1.15× 10−1

B. Example 2: Linear system identification
We apply our approach to a problem of system identifi-

cation. We consider the problem of identifying a stable LTI
system H(z) using N uncertain input-output measurements
{uk, ỹk}, where ỹk = yk + ηk, yk is the noise-free output
and ηk is noise.

We select model structure H̃(z, θ) =
∑P

i=1 θiBi(z), with
Bi(z) stable first-order filters. We look for the value of the
parameter θ that minimizes the ℓ∞-norm of the simulation
error

θ∗ = arg min
θ∈RP

∥yk(θ)− ỹk∥∞. (11)

This problem is easily recast to a linear programming prob-
lem. We integrate (6) and (4) setting Ki = ν = 1 and
Kp = −0.5. Both algorithms provide FIT = 98.5%, but
the PI algorithm is about two times faster than PDGD.

VI. CONCLUSIONS
We propose a novel continuous-time algorithm to solve

strongly convex optimization problems with inequality con-
straints. By elaborating on the feedback PI control approach
proposed in [3], we develop a variant of primal-dual gradient
dynamics in which an additional term adjusts the dynamics
and enhances the convergence speed. We prove that the
proposed method is globally exponentially convergent. The
effectiveness of the proposed algorithm is shown through
numerical simulations.
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Feedback Control of the Exploitation-Exploration Trade-off in Set
Membership Global Optimization

Mattia Alborghetti, Giulio Montecchio, Lorenzo Sabug Jr., Lorenzo Fagiano, Fredy Ruiz

Abstract— Trading off exploration and exploitation is a
crucial task in global (or black-box) optimization, to balance
the search for better local optimizers with the refinement
of already-found ones. Often, such a trade-off is not easily
controlled by the user, as it depends non-trivially on the tuning
parameters of the selected algorithm. A new concept is proposed
here, where the share of exploitation moves over the total
number of iterations is regulated by a feedback control law,
to achieve a user-defined set-point. This concept is applied to
the recently proposed Set Membership Global Optimization
(SMGO) technique, resulting in a modified algorithm. Together
with computational improvements the resulting approach is
extensively tested and compared with other methods. The
statistical tests indicate that the new algorithm has better
iteration-based optimization performance than the original one,
at the same time shortening the computational times by around
one order of magnitude. This extended abstract is based on a
recently presented conference paper [1].

Keywords— global optimization, set membership, algorithm
design.

I. INTRODUCTION

In many scientific, engineering, and social applications,
constrained optimization problems are non-convex and of-
ten lack closed-form objective and constraint expressions,
relying instead on simulations or experiments. These are
known as black-box, derivative-free, or global optimization
problems. To address these, four major approaches exist:
direct search, population-based, surrogate model-based, and
Lipschitz-based methods [2]. Among these, Bayesian opti-
mization (BO), using Gaussian process (GP) models and
acquisition functions, is particularly popular. However, BO’s
exploitation/exploration trade-off is often tuned by trial and
error, and its computational burden is high.

This work introduces a feedback loop to dynamically adapt
the exploitation/exploration balance in a novel method, called
Set Membership Global Optimization (SMGO), improving
its performance and providing a more intuitive way for the
user to distribute the sampling budget.

II. PROBLEM DESCRIPTION

Consider the minimization of a real-valued cost function
f : X → R, subject to S constraints gs : X → R, s =
1, . . . , S, where X ⊂ RD, is a compact, convex set in a
D-dimensional real space, referred as the search set:

min
x∈X

f(x)

s.t. gs(x) ≥ 0, s = 1, . . . , S.
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The only required assumption is the Lipschitz continuity and
boundedness of f and gs over X , defining generally unknown
Lipschitz constants for the cost function and constraints.
Under this assumption, we know a finite global minimum
exists and we want to find it by applying the so-called Set-
Membership Global Optimization (SMGO). At the heart of
the approach is a SM-based non-parametric model on the
data set, to estimate Lipschitz constants and upper and lower
bounds on the hidden cost function and constraints. These
bounds are then used either in an exploitation routine, to
select a point with the largest expected improvement, or in an
exploration one, to designate a point with large estimated un-
certainty. The algorithm carries out an expected-improvement
test to evaluate if it is estimated to improve on the current
best value by a large enough quantity given by the parameter
α. If such a test is passed, the exploitation candidate point
is sampled, otherwise, the algorithm explores. A detailed
description of the method can be found in [3].

III. METHOD: FEEDBACK CONTROL OF THE
EXPLOITATION/EXPLORATION TRADE-OFF

The trade-off between exploitation and exploration is a
crucial factor for the practical convergence rate of a global
optimizer. In SMGO, a non-negative parameter α controls
this trade-off. However, directly tuning α has various draw-
backs. The application of a fixed threshold limits the accu-
racy of the optimum that the algorithm can possibly achieve.
Moreover, the relationship between α and the amount of
exploitation steps performed is highly dependent on the
specific problem, so the tuning of α may need each time
a tedious trial and error procedure.

To address this problem, we propose an adaptive approach,
where the value of α is set by a feedback loop with a discrete-
time proportional-integral (PI) controller (see Fig. 1).

Fig. 1: Scheme of the exploitation/exploration trade-off con-
troller.

The user’s preference is now encoded by a new parameter,
Λref, which is a reference for the exploitation ratio

Λ(n) =
Nθ(n)

n
. (1)

i.e. the share of implemented exploitation moves Nθ(n) (with
successful expected improvement test) over the total number
n of performed iterations. Defining the tracking error e(n) =
Λ(n) − Λref, we compute α(n) according to a standard PI



Mean Optimum Optimum Std Computational time (s)
Problem D E-SMGO BO G-MS E-SMGO BO G-MS E-SMGO BO G-MS

T1 2 6.019e-01 6.005e-01 5.998e-01 3.2e-03 6.3e-04 4.7e-09 5.0 1210.3 0.14
T2 2 2.537e-01 2.542e-01 2.532e-01 4.2e-04 5.9e-04 1.4e-08 3.8 722.0 0.15
T3 2 -1.998e+00 -2.000e+00 -1.995e+00* 4.1e-03 5.5e-06 1.3e-02* 4.0 491.2 0.17

STYB 2 -7.830e+01 -7.833e+01 -7.366e+01* 5.3e-02 2.6e-03 7.8e+00* 5.0 666.6 0.14
STYB 10 -2.806e+02 -3.378e+02 -3.384e+02** 3.9e+01 1.1e+01 2.3e+01** 6.2 526.3 0.06
G04 2 -3.054e+04 -3.052e+04 -3.067e+04 8.8e+01 4.0e+01 2.3e-06 12.7 4713.5 0.12

G05MOD 4 5.259e+03 5.218e+03 5.126e+03 9.5e+01 2.5e+01 9.9e-10 10.4 3548.6 0.08
G08 2 -8.733e-02 -9.581e-02 -6.333e-02* 9.4e-03 1.8e-05 3.6e-02* 4.9 1066.5 0.11
G09 7 1.841e+03 7.541e+02 Inf** 1.2e+03 2.6e+01 NaN** 9.9 4531.8 0.09
G12 3 -9.584e-01 -1.000e+00 -9.603e-01 2.6e-02 8.4e-05 3.7e-02 4.6 1272.0 0.11

G23MOD 9 -3.900e+03 -3.383e+03 -3.900e+03 0.0e+00 8.5e+01 0.0e+00 7.0 3309.1 0.06
G24 2 -5.475e+00 -5.426e+00 -5.508e+00 3.9e-02 1.2e-01 2.0e-14 5.4 1671.8 0.18

TABLE I: Results of 50 independent runs on benchmark functions with a budget of N = 500 function evaluations for
E-SMGO, Bayesian optimization (BO) and gradient-based multistart (G-MS).
*: exhibits convergence to a local (not global) optimum in some of the fifty runs by graphical interpretation.
**: prematurely finished optimization due to the exceeding of maximum function evaluations in some of the fifty trials.

controller with an anti-windup structure to handle saturation
and ensure compliance with model hypotheses.
Note that the positive feedback in Figure 1 is justified by
the fact that larger values of α(n) lead to more difficult
improvement tests, encouraging lower values of Λ(n) (1).

Fig. 2: Example of close loop control of the exploitation ratio
during the optimization of a benchmark function using a PI
controller.

A typical behavior of the ratio Λ(n) and factor α(n) along
iterations is presented in Fig. 2. A theoretical analysis of the
effect of the PI gains on the algorithm behavior is difficult to
carry out and would certainly require additional assumptions
on the cost function, which would be hardly verifiable and
quite limiting. On the other hand, we found that tuning of
these gains is not as critical as the original tuning of the
parameter α. We always used the same values in all our
tests without noticing any performance degradation.

IV. BENCHMARK RESULTS

We tested the introduced algorithmic improvements on a
set of 12 non-convex benchmark optimization problems from
[4], with different search-space dimensions, function proper-
ties, and feasible region volume as a fraction of the search set
volume. Simulations have shown that our enhanced version
(E-SMGO) is much more computationally efficient, requiring
nearly one order of magnitude lower computational time
than the original SMGO, delivering similar or better quality
and accuracy of the optimal solution. Moreover, applying
the feedback controller reduces significantly the discrepancy
between the desired exploitation-exploration ratio and the
actual one. More detailed results are presented in [1].

We solved the benchmark problems also with two other
well-established optimizers: gradient-based multistart (G-
MS) and Bayesian optimization (BO), using the same func-
tion evaluation budget N , to ensure that the comparison
is not influenced by the computational time of individual
cost functions (Table I). As a general conclusion, based on
these results, BO provides slightly more precise optimal solu-
tion values compared to E-SMGO, but requires significantly
higher execution time. On the other hand, G-MS outperforms
the other methods in terms of computational efficiency and
it exhibits the smallest standard deviation among alterna-
tives, except for the cases when they remain trapped in
a local minimum (* Table I). Moreover, it requires many
function evaluations for gradient computation, especially in
high-dimensional cases where a single gradient descent can
exhaust the entire budget (** Table I). This can degrade the
optimal result, particularly with a limited function budget,
as is common in complex, costly real-world problems [5].
It’s also significant to underline that G-MS cannot provide a
feasible solution for G09 in 20 out of 50 tests.

V. CONCLUSION

This work presented a novel approach to regulate the
trade-off between exploitation and exploration in global
optimization algorithms, based on feedback control and de-
ployed in the Set Membership Global Optimization (SMGO)
technique. These changes have been tested on twelve bench-
mark functions, showing that the enhanced SMGO strategy
generally improves over the original version in terms of
iteration-based optimization performance, while requiring
much lower computational effort. Moreover, a state-of-the-
art comparison demonstrates good optimization-based per-
formance, positioning it between randomized local solvers
and time-consuming global methods.
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I. INTRODUCTION

QUADRATIC programming (QP) solvers that join effectiveness
with a simple implementation are becoming essential in

the field of optimal control, specifically when dealing with
real-time applications with strict timing constraints and limited
computational resources. To address this need, we present a novel
high-performance QP solution method based on pseudo-transient
continuation (PTC). PTC is a numerical technique that transforms
multivariate nonlinear equations into autonomous systems that
converge to the solution sought. In our approach, we recast the
general QP Karush-Kuhn-Tucker (KKT) conditions into a system
of equations and employ PTC to solve the latter to attain the
optimal solution. Importantly, we provide theoretical guarantees
demonstrating the global convergence of our PTC-based solver to
the optimal solution of any given QP. To showcase the effective-
ness of PTC, we employ it within the domain of Model Predictive
Control (MPC). Specifically, numerical simulations are carried
out on the MPC control of a quadrotor – a demanding dynamical
system – highlighting excellent results in accurately executing the
control task and ensuring lower computational times compared to
conventional QP solvers.

II. PSEUDO-TRANSIENT CONTINUATION FOR
QUADRATIC PROGRAMMING

Consider a multivariate nonlinear equation in the form

𝐹(𝑥) = 0, 𝐹 ∶ R𝑛 → R𝑛, (1)

having a set of solutions 𝑆 = {𝑥 ∈ R𝑛 ∶ 𝐹 (𝑥) = 0}.
Pseudo-transient continuation (PTC) [1] seeks a functional
𝑓(𝐹(𝑥)) ∶ R𝑛 → R𝑛 such that the autonomous system

̇𝑥 = 𝑓(𝐹(𝑥)) (2)

has a set of equilibrium points 𝑆∗ ⊆ 𝑆 and converges (at least
locally) to one of such equilibria, i.e.,

𝑓(𝐹(𝑥(𝑡))) → 0, 𝑥(𝑡) → 𝑥∗ ∈ 𝑆∗ for 𝑡 → +∞. (3)

In this work, we leverage PTC to efficiently solve general convex
quadratic programs (QPs) in the following form:

min
𝑦

1
2𝑦⊤𝐻𝑦 + 𝑐⊤𝑦 s.t. 𝐶𝑦 = 𝑝, 𝐷𝑦 ≤ 𝑞, (4)

where 𝑦 ∈ R𝑛 is the vector of decision variables; 𝐻 ∈ R𝑛×𝑛,
𝐻 = 𝐻⊤ ≻ 0; 𝐶 ∈ R𝑁𝐸×𝑛 and 𝑝 ∈ R𝑁𝐸 represent the 𝑁𝐸
equality constraints, 𝐶 has full row rank; 𝐷 ∈ R𝑁𝐼×𝑛 and 𝑞 ∈
R𝑁𝐼 represent the 𝑁𝐼 inequality constraints. Since the cost and
the inequality constraints of (4) are convex functions, it admits a
unique global minimum 𝑦∗. PTC allows to solve (4) for its global
optimum with high computational performance. In this perspective,
two fundamental steps have to be performed:
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and Telecommunications, 10129 Turin, Italy (e-mail: {lorenzo.calogero,
michele.pagone, alessandro.rizzo}@polito.it). (Corresponding
author: Alessandro Rizzo.)

The work of L. Calogero was supported by the NGEU-PNRR Project (MUR -
D.M. 352/2022). The work of M. Pagone and A. Rizzo was supported by the MOST
(Sustainable Mobility National Research Center) and funded by the European Union
NextGenerationEU Project (PNRR - Mission 4, Component 2, Investment 1.4 - D.D.
1033 17/06/2022) under Grant CN00000023.

1. by manipulating the Karush-Kuhn-Tucker (KKT) conditions as-
sociated with (4), recast them as a system of equations like (1),
having as unique solution the global optimum of (4);

2. derive sufficient conditions characterizing 𝐹 such that, for given
functionals 𝑓 , the global asymptotic convergence of (2) to its
unique equilibrium is guaranteed.

These two steps are assessed in Sections II-A and II-B, respectively.

A. Conversion of QP KKT Conditions into a System of Equations
Let us consider the Lagrangian of (4), i.e.,

ℒ(𝑦, 𝜇, 𝜆) = 1
2𝑦⊤𝐻𝑦 + 𝑐⊤𝑦 − 𝜇⊤(𝐶𝑦 − 𝑝) − 𝜆⊤(𝐷𝑦 − 𝑞), (5)

where 𝜇 ∈ R𝑁𝐸 and 𝜆 ∈ R𝑁𝐼 are the Lagrange multipliers. If a
triple (𝑦∗, 𝜇∗, 𝜆∗) satisfies the KKT conditions, i.e.,

∇𝑦ℒ(𝑦, 𝜇, 𝜆) = 𝐻𝑦 + 𝑐 − 𝐶⊤𝜇 − 𝐷⊤𝜆 = 0, 𝐶𝑦 = 𝑝, (6a)
𝐷𝑦 ≤ 𝑞, 𝜆 ≤ 0, 𝜆⊤(𝐷𝑦 − 𝑞) = 0, (6b)

then 𝑦∗ is also the global minimum of (4). According to [2], condi-
tions (6b) can be equivalently rewritten as

(𝐷)𝑖,⋅ 𝑦 = 𝑞𝑖 if 𝜆𝑖 ≤ 0, (𝐷)𝑖,⋅ 𝑦 < 𝑞𝑖 if 𝜆𝑖 = 0, (7)

where (𝐷)𝑖,⋅ denotes the 𝑖-th row of 𝐷. (7) is also equivalent to the
following system of piecewise affine equations [2]:

𝐷𝑦 = 𝜙[−∞,𝑞](𝐷𝑦 − 𝛼𝜆), (8)

where 𝛼 ∈ R>0 and 𝜙[𝑎,𝑏](𝑧) denotes the asymmetric saturation of
the vector 𝑧 ∈ R𝑁𝐼 by [𝑎, 𝑏], whose expression is

𝜙[𝑎,𝑏](𝑧) ≡ [𝜙[𝑎𝑖,𝑏𝑖](𝑧𝑖)]
𝑁𝐼
𝑖=1, 𝜙[𝑎𝑖,𝑏𝑖](𝑧𝑖) =

⎧{
⎨{⎩

𝑎𝑖 if 𝑧𝑖 < 𝑎𝑖,
𝑧𝑖 if 𝑎𝑖 ≤ 𝑧𝑖 ≤ 𝑏𝑖,
𝑏𝑖 if 𝑧𝑖 > 𝑏𝑖.

(9)
Hereafter, for notation clarity, we denote 𝜙[−∞,𝑞] as 𝜙.

The KKT conditions (6) can be then rewritten as a system of
equations as follows:

𝐻𝑦 + 𝑐 − 𝐶⊤𝜇 − 𝐷⊤𝜆 = 0, 𝐶𝑦 − 𝑝 = 0, (10a)
𝐷𝑦 − 𝜙(𝐷𝑦 − 𝛼𝜆) = 0. (10b)

The system of equations (10) can be simplified as

𝑦 = 𝐺′𝐷⊤𝜆 + ℎ′, (11a)
𝜇 = (𝐶𝐻−1𝐶⊤)−1(𝑝 − 𝐶𝐻−1(𝐷⊤𝜆 − 𝑐)), (11b)
𝐺𝜆 + ℎ − 𝜙((𝐺 − 𝛼𝐼)𝜆 + ℎ) = 0, (11c)

where

𝐺′ = 𝐻−1 − 𝐻−1𝐶⊤(𝐶𝐻−1𝐶⊤)−1𝐶𝐻−1,
ℎ′ = 𝐻−1(𝐶⊤(𝐶𝐻−1𝐶⊤)−1(𝐶𝐻−1𝑐 + 𝑝) − 𝑐),
𝐺 = 𝐷𝐺′𝐷⊤, ℎ = 𝐷ℎ′. (12)

Only (11c) has to be solved for 𝜆, since 𝑦 and 𝜇 are function of 𝜆
only. Also, since (11) admits a unique solution (𝑦∗, 𝜇∗, 𝜆∗), then
𝜆∗ is the unique solution of (11c).

B. Global Convergence of PTC for QPs Solution
To prove that any QP problem (4), when rewritten as a system of
equations (11), can be effectively solved through PTC and exhibits
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Solver Exec. time Iterations
Max Mean Max Mean

PTC 4.19 0.85 20 3
quadprog 98.04 45.02 90 7
Gurobi 14.23 10.96 24 16
MOSEK 43.20 20.17 49 24
OSQP 53.64 6.17 2875 329
qpSWIFT 6.33 4.73 18 14
DAQP 8.74 1.43 23 3
PIQP 4.98 4.28 13 11
QPALM 13.29 6.82 49 28

Table 1. Execution time (in ms) and itera-
tions (single MPC control step).

global convergence to its optimum, we introduce Theorem 1, re-
porting a sufficient condition for the PTC autonomous system (2)
to be globally asymptotically stable in the sense of Lyapunov.

Theorem 1. Assume that: i) the multivariate nonlinear equation
(1), i.e., 𝐹(𝑥) = 0, has a unique solution 𝑥∗; ii) there exists a
symmetric and positive definite matrix 𝑀 ∈ R𝑛×𝑛 such that

(𝑥 − 𝑥∗)⊤𝑀𝐹(𝑥) > 0, ∀𝑥 ≠ 𝑥∗. (13)

Then, the system
̇𝑥 = −𝛽𝐹(𝑥), 𝛽 ∈ R>0 (14)

has a unique equilibrium point in 𝑥∗ and such equilibrium is glob-
ally asymptotically stable (GAS).

Proof. We refer the reader to the full paper [3].

We then show, in Proposition 1, that the KKT system of equa-
tions (11) satisfies Theorem 1 and, thus, can be solved via PTC.

Proposition 1. Let us consider (11c) and denote it as 𝐹(𝜆) = 0.
Then, the system

�̇� = −𝛽𝐹(𝜆), 𝛽 ∈ R>0 (15)

has a unique equilibrium point 𝜆∗, coinciding with the solution of
(11c), and such equilibrium is GAS.

Proof. We refer the reader to the full paper [3].

III. APPLICATION OF PTC TO MODEL PREDICTIVE CONTROL

To assess the performance of PTC, we consider the following Model
Predictive Control (MPC) problem:

min
�̂�⋅|𝑘,�̂�⋅|𝑘

𝐽𝑘(�̂�⋅|𝑘, ̂𝑥⋅|𝑘)

s.t. 𝑖 = 0, 1, … , 𝑁𝑝 − 1,
̂𝑥0|𝑘 = 𝑥𝑘, ̂𝑥𝑖+1|𝑘 = 𝐴𝑘 ̂𝑥𝑖|𝑘 + 𝐵𝑘�̂�𝑖|𝑘 + 𝑏𝑘, (16a)

𝑢 ≤ �̂�𝑖|𝑘 ≤ 𝑢, 𝑥 ≤ ̂𝑥𝑖|𝑘 ≤ 𝑥, (16b)

𝐽𝑘(�̂�⋅|𝑘, ̂𝑥⋅|𝑘) =
𝑁𝑝−1

∑
𝑖=0

(‖ ̂𝑥𝑖|𝑘 − 𝑥𝑟,𝑘+𝑖‖2
𝑄 + ‖�̂�𝑖|𝑘‖2

𝑅) +
𝑁𝑝−1

∑
𝑖=1

(‖�̂�𝑖|𝑘 − �̂�𝑖−1|𝑘‖2
𝑅Δ

) + ‖ ̂𝑥𝑁𝑝|𝑘 − 𝑥𝑟,𝑘+𝑁𝑝
‖2

𝑃 , (16c)

where �̂�𝑖|𝑘 ∈ R𝑛𝑢 , ̂𝑥𝑖|𝑘 ∈ R𝑛𝑥 are the inputs and states predicted 𝑖
steps ahead at time 𝑘, respectively; 𝑥𝑟 is the state reference trajec-
tory; (16c) is the MPC cost function (‖𝑥‖2

𝑀 ≡ 1
2 𝑥⊤𝑀𝑥); (16a) are

the prediction model constraints; (16b) are inputs and states con-
straints. The MPC optimal control problem (16) can be rewritten
to match the QP formulation (4); thus, it can be fast solved for its
global optimum by PTC with global convergence guarantees, in
view of the results presented in Section II.

As nonlinear plant to control, we select the Euler-Lagrange
quadrotor model in [4]. The control task is to track a lemniscate
reference trajectory, partially crossing an infeasible region of
space (see Figure 1). To deploy the linear MPC (16) to control the
nonlinear continuous-time plant, we adopt the sequential quadratic
programming (SQP) approach with real-time iteration (RTI) to
discretize and linearize the plant.

IV. SIMULATIONS AND RESULTS

PTC is compared with the following conventional QP solvers: the
active-set solvers quadprog and DAQP; the interior-point solvers
Gurobi, MOSEK, qpSWIFT, and PIQP; the operator splitting solver
OSQP; the augmented Lagrangian solver QPALM.

Simulations are performed with MATLAB® 2023b on a 13th Gen
Intel® Core™ i7 CPU at 1.7 GHz. The full source code is avail-
able online1. The PTC autonomous system (15) is numerically in-
tegrated using the explicit Runge-Kutta 2(3) method.

Figure 1 reports the quadrotor closed-loop trajectory, obtained by
solving the MPC problem (16) with PTC. This trajectory is rather
coincident with the globally optimal one (estimated with Gurobi by
setting very low optimality tolerances).

To further assess the goodness of the obtained MPC solutions,
Figure 2 reports the primal and dual residuals at each time instant
and for every solver. We see that PTC consistently achieves low
residuals that stay below the thresholds defined by the optimality
criteria. On the contrary, some of the other solvers fail to deliver
an acceptable dual residual.

Finally, Figure 3 compares, for each solver, the execution time
of each MPC control step, reporting both the actual time values
(solid lines) and Monte Carlo envelopes (scatter plots), obtained by
randomly selecting 50 initial states 𝑥0 from the feasible set [𝑥, 𝑥].
Results are summarized in Table 1, including the number of itera-
tions required by each solver. We observe that PTC outperforms all
other solvers in terms of both maximum and average computational
time.
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Forecasting Wind Power: A Comparative Study of Parametric and Non-parametric
Approaches Using Real-World Data

Department of Electrical, Computer and Biomedical Engineering
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Marco Capelletti, Giuseppe De Nicolao

Abstract

Integrating renewable energy sources into the power grid introduces significant uncertainty, making probabilistic wind power
forecasting crucial. This study compares two methods: parametric Beta regression with natural spline preconditioning and non-
parametric Quantile Regression Forests (QRFs). Using SCADA data from the Penmanshiel wind farm and wind forecasts from the
Copernicus project, models were evaluated for a 6-hour ahead forecasting horizon. Beta regression effectively captured complex power
distribution patterns influenced by varying wind speeds, while QRFs, despite providing valid probabilistic forecasts, exhibited higher
variance and required meticulous hyperparameter tuning. The findings highlight the challenges and prospects of flexible modeling for
probabilistic wind power forecasts.

Problem statement

Probabilistic wind power forecasting has two primary objectives: enabling wind farm owners to optimize revenue and bidding strategies
in the day-ahead electricity market, and helping Transmission System Operators (TSOs) manage grid imbalances and activate storage
or backup power resources proactively.

Accurate wind power prediction relies on power curve models, which describe the performance of wind turbines and wind farms.
Two main forecasting approaches exist: indirect and direct. The indirect approach uses a power curve model derived from actual data
and fed with weather forecasts from meteorological providers. The direct approach links weather forecasts to power output, typically
via machine learning techniques. The whole problem becomes even more challenging when, instead of point predictions, one aims at
probabilistic predictions, providing the statistical distribution of future wind power.

While the identification of probabilistic models of measurement-based power curves for indirect forecasting is addressed in [CRDN24],
it is still open if such parametric models can capture the complexities that can be learnt by machine learning methods used in the
direct forecasting framework. In this work, we focus on probabilistic prediction within the direct framework, exploiting SCADA data
from the Penmanshiel wind farm and wind forecasts from the Copernicus project. The objective is to develop a parametric approach
and compare its performances to that of QRFs, a machine learning nonparametric method.

In order to study the statistical distribution of the power given the wind speed forecast, power curve data were divided into bins
of 2 m s−1 along the wind speed forecast axis, ranging from 0 to 18 m s−1. The resulting distributions in Fig. 1 display significant
variations with wind speed: the conditional distribution of wind power appears right-skewed at low speeds, “U”-shaped at intermediate
speeds, and left-skewed at high speeds. This heterogeneity highlights the complexity, non-Gaussian nature, heteroscedasticity, and
asymmetry of the power distribution, emphasizing the inadequacy of Gaussian models for these data.

Given this complexity, one could argue the inadequacy of parametric approaches and the need for highly flexible non parametric
models. We will somehow question this prejudice by showing that all the features of the wind power distribution can be captured by
a parametric model belonging to the category of Generalized Linear Models.
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Figure 1: Distribution of measured wind power within specific wind speed forecast ranges for a 6-hour ahead forecast horizon. Notably,
the distribution, right skewed for low wind speed, becomes U-shaped and eventually left skewed for high wind speed.

Method

This study compares two direct approaches for wind power forecasting: parametric Beta regression and non-parametric Quantile
Regression Forests (QRFs).

Beta regression, a type of Generalized Linear Model (GLM), extends ordinary linear regression by using a link function g(·) to
handle response variables with non-Normal error distributions. While logistic and double exponential links are common in wind power
applications, they may not adequately capture the diverse shapes of wind power curves.

In contrast, following [CRDN24], a hybrid two-step approach is proposed:
Step 1: Preconditioner Estimation . Estimate a preconditioner s(X), where X is typically the wind speed covariate. For

example, using a natural spline s(X;α), fit parameters α via nonlinear least squares. This provides a flexible initial approximation of
the power curve, accommodating its complex, nonlinear shape.

Step 2: Integration into a Beta GLM . Incorporate the preconditioner s(X) into a Beta GLM by modifying the link function
g(·) such that:

µ = g−1(η) =
1

1 + exp(−η − s(X))
.
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Here, η is a linear combination of covariates with coefficients βj , estimated during this step. This allows the model to refine the initial
approximation while retaining the robust probabilistic framework provided by the Beta distribution.

On the other hand, Quantile Regression Forests (QRFs), an extension of random forests, can be used to model the wind power
distribution as a function of wind speed forecasts[MR06]. QRFs operate by constructing an ensemble of trees and estimating the
conditional distribution of the response variable based on weighted observed response variables.

The distinguishing feature of QRFs lies in their ability to estimate conditional quantiles, offering a non-parametric and accurate
approach to infer the relationship between predictor variables and the full conditional distribution of the response variable. This makes
QRFs suitable for applications where capturing the entire distributional range of outcomes is crucial, such as in wind power forecasting
under varying environmental conditions.

In order to

The proposed method was validated using real measurement SCADA data and forecast data. For the measurement data, SCADA data
from the first Senvion MM82 turbine at Penmanshiel wind farm in the UK was utilized [Plu23]. Forecast data were sourced from the
Copernicus European project, specifically the UK Met Office 10m u and v wind components, spanning 8 forecast horizons (6, 12, 18,
24, 30, 36, 42, and 48 hours ahead). These forecasts were retrieved starting from midnight at the exact coordinates of the wind turbine
(55°54’17.9”N, 2°17’30.7”W), with a horizontal resolution of 1° x 1°.

The analysis period covered from August 1, 2017, to July 1, 2021. The dataset was split into training and test sets sequentially:
training data from August 1, 2017, to December 31, 2019, and test data from January 1, 2020, to July 1, 2021.

To ensure data quality, a conservative cleaning approach was employed, filtering out outliers by excluding periods of downtime and
curtailment. This was achieved by verifying that the SCADA variable ’Lost Production to Downtime and Curtailment Total (kWh)’
was equal to zero.

Initially, our analysis focused on the first forecasting horizon, which is 6 hours ahead, starting from midnight.
The findings demonstrate that the Beta regression model effectively captures the diverse shapes of the power distribution, ac-

commodating the complexities introduced by varying wind speeds, see Fig. 2a). Conversely, QRF also provided valid probabilistic
forecasts, but it exhibited higher variance, see Fig. 2b). This might be due to the need for meticulous hyperparameter tuning. Despite
these differences, both approaches yielded meaningful and comparable probabilistic forecasts, with Beta Regression benefiting from
greater interpretability.
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Figure 2: Evaluation of Beta regression models with variable dispersion (left) and Quantile Regression Forest (QRF) models (right)
for test data over a 6-hour ahead forecast horizon. Both graphs display the median (red line) and prediction intervals at the 10th
percentile (purple-shaded area) and the 90th percentile (light red-shaded area). The grey area indicates where 80% of the data points
should fall according to the model. The bold black numbers show the percentages of test data within these zones, demonstrating
that the models produce a reasonably adequate description of the wind power distribution for sequential test data. Despite careful
hyperparameter tuning via cross-validation using the Python Optuna toolbox, some overfitting is evident in the QRF model.

Conclusions

Beta regression with natural spline preconditioning demonstrated fully capable to capture the diverse and non-Gaussian characteristics
of wind power distributions. Also Quantile Regression Forests (QRFs) yielded valid probabilistic forecasts, but exhibited higher
variance, necessitating meticulous hyperparameter tuning. In conclusion, both methods proved effective for wind power forecasting,
with Beta regression somehow superior in terms of interpretability and consistency.
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Humans-in-the-Building: Getting Rid of Thermostats in Comfort-Based
Energy Management Control Systems[⋆]
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Jiali Wang, Yang Tang, and Luca Schenato

I. Introduction. The Energy Management Control Systems
present in today’s Building Automation Systems (BASs)
typically utilize thermostats, potentially integrated with hu-
midity, CO2, and occupancy sensors, to regulate internal
temperature within a predefined range to optimize energy
consumption. However, direct feedback from occupants re-
garding their personal comfort is rarely considered. Ther-
mal comfort is internationally defined as a psychological
state of satisfaction with the surrounding temperature. Some
researchers view it as an environmental attribute linked to
physical climate and the control of heating, ventilation, and
air conditioning (HVAC) control, while others see it as a
subjective sensation, with no perfect conditions to satisfy
everyone. Even under ideal temperatures, less than 70%
of people may feel comfortable. Thus, thermal comfort is
influenced by indoor and outdoor temperatures, occupant
expectations, and individual tolerance levels.

Understanding the diverse thermal comfort perceptions of
occupants amidst fluctuating room temperatures is crucial for
comprehending their physiological responses and assessing
how individual differences influence the determination of
optimal room temperature. The overall comfort/discomfort
of occupants is directly determined by their perceptions of
negative and positive thermal sensations. Discomfort, akin
to a “complaint,” arises when occupants experience devia-
tions from their ideal room temperature levels. Categorizing
individuals’ temperature responses as personal (dis)comfort
signals facilitates the derivation of individually customized
optimal indoor temperatures, enhancing overall comfort.

Integrating residents’ comfort perceptions into the energy
management process is crucial for enhancing energy manage-
ment systems (EMS) and promoting residents’ well-being.
This involves ensuring occupant comfort while reducing
energy consumption, a balance that poses a significant chal-
lenge. Therefore, this work proposes a new thermal control
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jialiwang@mail.ecust.edu.cn).
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L. Schenato is with the Department of Information Engineering, Univer-
sity of Padova, 35131 Padova, Italy (email: schenato@dei.unipd.it).

paradigm, referred to as “humans-in-the-buildings”, where
individuals can directly signal their discomfort to the energy
management system which thus adjusts the HVAC control
inputs accordingly.

Currently, research on BASs primarily focuses on how to
reduce the energy consumption of buildings, without fully
taking into account the thermal comfort of each occupant in
real-time. Although some works have considered user ther-
mal comfort optimization, they are either open-loop control
approaches or rely on predictive models, without taking into
account the actual user feedback. In contrast, our approach
centers on individual comfort, recognizing occupant diver-
sity, and aims to minimize energy consumption significantly
while incorporating real-time occupant feedback.

The contribution is twofold. First, compared with [1]
where occupants’ comfort is estimated based on physio-
logical signals obtained by devices like smart wristbands
and therefore the occupants have a passive role, in this
work we establish a thermal comfort model where occupants
actively generate discomfort signals according to individual
preferences which are then used by the EMS to achieve
optimal indoor temperature. The second contribution is that,
based on real-time occupants’ comfort signals, we propose
a novel method to determine the optimal indoor temperature
range, aiming at minimizing discomfort for the various
occupants while reducing building energy consumption as
much as possible. This is an innovative approach as it does
not require to know the exact comfort profile of the occupants
which is difficult to capture and might even change over time.

II. User Comfort Modeling and Signaling. We model a
building as M adjacent rooms, each with N occupants and
one HVAC system. Each occupant i, holds a temperature
sensation signal remote controller ηi which is equipped
with three buttons representing cold (η(t) = +1), normal
(η(t) = 0), and hot (η(t) = −1) signals, respectively. Each
occupant can be periodically asked by the EMS to select
their current sensation or can directly enter it as needed.
We assume that the (dis)comfort level of each occupant can
be modeled by a function, referred as signed discomfort
function f̃i(Tr) : R → (−1, 1). The signed discomfort
function is continuous and strictly monotonically decreasing
with f̃i(−∞) = −f̃i(+∞) = 1. The temperature T ∗

i such
that f̃i(T ∗

i ) = 0, is defined as the ideal comfort temperature
of the occupant i. The absolute discomfort function fi(Tr)



is defined as fi (Tr) := |f̃i (Tr) |. We define the thermal
comfort tolerance of each occupant as ∆i. As a result, the
signaling of each occupant is:

ηi (Tr,∆i) =

 +1, Tr < T ∗
i −∆i,

0, T ∗
i −∆i ≤ Tr ≤ T ∗

i +∆i,
−1, Tr > T ∗

i +∆i.

To achieve optimal indoor temperature, it’s crucial to
determine the total number of occupants in discomfort at
any room temperature: g(Tr, {∆i}) =

∑N
i |ηi(Tr,∆i)| ∈

N, where {∆i} represents all occupants’ thermal comfort
tolerances. Ideally, the EMS should adjust the temperature
to minimize the number of uncomfortable occupants: Υ∗ :=
argminTr g(Tr, {∆i}). However, g(Tr, {∆i}) might not be
quasi-convex, Υ∗ might not be compact, and guaranteeing
comfort for all occupants may be impossible. Thus, the EMS
needs to learn each user’s comfort profile to estimate Υ∗,
which is challenging and raises privacy concerns. To address
this, we consider the sum of all occupants’ discomfort
signals: h(Tr, {∆i}) :=

∑N
i=1 ηi(Tr,∆i) ∈ Z.

The total discomfort signal sum h is a monotoni-
cally decreasing stepwise function where h (−∞, {∆i}) =
−h (+∞, {∆i}) = N . The set of optimal temperature
with respect to the function h(·) is Υ := [Tmin, Tmax] =
{Tr : h (Tr, {∆i}) = 0}, where Tmin and Tmax represent
the minimum and maximum optimal indoor temperatures,
respectively. It can be noticed that in some scenarios in which
the {∆i} are larger, the two sets Υ and Υ∗ coincide and it
is possible to satisfy all occupants, i.e. g (Υ∗, {∆i}) = 0.
Then, Υ = Υ∗ and g (Υ∗, {∆i}) = 0 if and only if
maxi{T ∗

i −∆i} < minj{T ∗
j +∆j}. Moreover, if the previous

condition is satisfied, we have Tmin = maxi{T ∗
i −∆i} and

Tmax = minj{T ∗
j +∆j}.

III. Comfort-Based Control Design. To minimize energy
consumption while maintaining optimal thermal comfort lev-
els, we need to address the following optimization problem:

T ∗
r = argmin

Tr

P (Text, Tr) = argmin
Tr

µ(|Text − Tr|),

s.t. h (Tr, {∆i}) = 0,

where P represents the power consumption of the EMS, and
µ(x) is monotonically increasing and µ(0) = 0. Then, the
optimal indoor temperature T ∗

r is given by

T ∗
r =Ψ(Text, {∆i})=

 Tmin, Text < Tmin,
Text, Tmin < Text < Tmax,
Tmax, Text > Tmax.

To implement the indoor temperature control policy, the
EMS would typically need Tmin, Tmax, and measurements
of room temperature Tr and external temperature Text, along
with the occupants’ discomfort profiles. However, the EMS
can bypass this by using the real-time cumulative discomfort
signal y(t) := h(Tr(t), {∆i}) as an error signal. The EMS
heats the room if y(t) > 0 and cools it if y(t) < 0, aiming
for Tr(t) → Υ. When y(t) = 0, Tr(t) is within Υ, and no
control is needed as thermodynamics will align room and
external temperatures naturally, Tr(t) − Text(t) → 0. Thus,
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Fig. 1. Indoor Temperature and User Discomfort Over Six Days with
HVAC Control.

the optimal energy policy can be achieved using real-time
feedback without needing temperature sensors.

If the EMS is able to implement the previous indoor
temperature control policy, then it is possible to consider the
absolute value f̂i of the closed-loop discomfort experienced
by user i as f̂i (Text, {∆i}) := fi (T

∗
r ) = fi (Ψ (Text, {∆i})).

It is reasonable to consider the worst case among all possible
external temperatures via the following “cost”:

Ji ({∆i}) :=max
Text

f̂i(Text, {∆i}) = max
Text

fi (Ψ (Text, {∆i}))

=max {fi (Tmin) , fi (Tmax)} .

This performance index is important since it allows to
evaluate the impact of the set of thermal comfort tolerances
{∆i} selected by the users. Ideally, {∆i} should be selected
to keep Ji as small as possible for all users.

IV. Simulations. Finally, the effectiveness of the proposed
comfort-based control is substantiated through simulations
conducted on multiple adjacent rooms established building
dynamics modeling. We simulated the indoor temperatures
of two adjacent rooms in a building over six working days,
with occupants present from 8:00-18:00. The HVAC system
operated only during this time if occupants signaled dis-
comfort; otherwise, indoor temperatures varied with outdoor
fluctuations, as shown in Fig. 1. The outdoor temperature
ranged between 9◦ and 25◦, with daily minima and maxima
randomly generated. For the 4 users in Room 1 and 3 users
in Room 2, we categorized the days into three comfort
tolerance levels: ∆ = 0, 3, 1.5. It was observed that at
∆ = 1.5, overall discomfort was minimized, while at ∆ = 0
or ∆ = 3, discomfort differences among users were larger.
Rapid discomfort changes occurred due to low morning
temperatures, and room temperatures varied in response to
occupant discomfort signals.
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Optimal scheduling and real-time control of a microgrid 

with an electrolyzer and a fuel cell systems using a 

reference governor approach 

Yassine Ennassiri a, Giulio Ferro a Loredana Magistri b, Michela Robba a 

a) Department of Informatics, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa 16145, Italy 

b) Thermochemical Power Group (TPG), DIME, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy 

This work proposes a novel approach for the optimal scheduling and control of a microgrid with an electrolyzer and fuel 

cell systems, both of proton exchange membrane (PEM) technology [1]. It is based on a hierarchical procedure constituted 

of two levels of optimization: a higher level based on an economic optimization for the optimal scheduling of different 

components of the microgrid and a lower level for the real-time control of the hydrogen systems: PEM electrolyzer 

(PEMEZ) and PEM fuel cell (PEMFC) [2]. The flexible operation imposed by the higher level leads to a violation of the 

limits designed by the manufacturer of the hydrogen components, specifically when switching from one power level to 

another. The current proportional-integral (PI) controllers integrated into those systems cannot handle this issue, which 

provokes a premature ageing phenomenon of the materials and leads to poor performance. In the present paper, at the 

lower level, a reference governor (RG) real-time control approach has been added to the PI controller to ensure the respect 

of the operating limits and guarantee better performances (Figure 1). The focus has been given to the stack's temperature 

( , ,/FC EZ
st t st tT T ) in both the electrolyzer and fuel cell systems as the control objective because of its direct influence on the 

material's durability and, by extension, on efficiency [3][4]. The bi-level optimization and control architecture has been 

applied and validated through simulations using data from a real-world case study, specifically the Savona Campus Smart 

Polygeneration Microgrid [5] (Figure 2). The results showed a significant reduction in the overshoots of the stack's 

temperature compared to the PI controller. 

 

Figure 1 The RG scheme 
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Figure 2 The Microgrid case study 

In summary, the main contribution of this work can be summarized as follows:  

• Introducing a bi-level optimization architecture that optimizes microgrid component scheduling while ensuring 

system stability in the face of economic variability, addressing a critical challenge in microgrid management.  

• Developing a temperature control technique, seamlessly integrated with the widely used Proportional-Integral 

(PI) controller using the Reference Governor (RG) approach. This technique enhances temperature control 

within hydrogen systems, maintaining them within manufacturer-specified limits, and can be easily implemented 

alongside existing PI controllers for practical applications.  

• Demonstrating the effectiveness of this methodology through a practical case study within the Savona Campus 

microgrid’s. This application highlights the real-world value of our contributions by improving transient 

temperature control, a crucial aspect often challenging conventional PI controllers. 
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On the Kite-Platform Interactions in Offshore Airborne
Wind Energy Systems: Frequency Analysis and Control Approach

Sofia Trombini, Lorenzo Fagiano

I. INTRODUCTION

Airborne Wind Energy (AWE) systems are innovative de-
vices that harness high-altitude winds to generate electricity
[1]. These systems consist of tethered aircraft or kites that
can fly at altitudes exceeding 300 meters, benefiting from
more intense and constant winds. Due to their lightweight
and simple structure, they are strong candidates to play a
crucial role in the transition to sustainable energy, comple-
menting established renewable technologies.
Over the past 20 years, AWE research has focused on
inland implementations to ensure robustness and reliability
throughout all operational phases. However, future deploy-
ment targets include deep offshore applications, offering
benefits like lighter floating platforms compared to wind
turbines, stronger winds at lower altitudes, and ample space
for AWE farms. Currently, the literature on offshore AWE
is limited to articles [2] and [3], along with the experience
of the previous company Makany Power [4], the only one
that attempted to test AWE systems offshore. The research
presented here aims to expand our knowledge of the offshore
application. This involves not only developing a model for
the components but also studying the interaction between the
kite and the platform, identifying potential challenges, and
proposing suitable control solutions.

II. SYSTEM MODEL

The system comprises two main components: the
AWE system and the platform. The AWE system under
consideration is a pumping-flexible system consisting of
a 360 m2 soft kite and a single tether. On the other hand,
the platform is a 10-meter-deep spar-buoy (i.e., a cylinder)
connected to the seabed via four symmetric catenary mooring
lines. We employ a specific mathematical model for each
component, resulting in the definition of the equations
of motion of the entire system. A point-mass model is
chosen for the AWE system [5], where the kite’s position is
described using three variables: the angle of elevation θ , the
angle of orientation φ and the distance between the kite and
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the origin of the fixed reference frame r. Newton’s equations
of motion for the three variables are then represented as
θ̈(t) = Fθ (t)

m(t)r(t) , φ̈(t) =
Fφ (t)

m(t)r(t) sin(θ(t)) , r̈(t) = Fr(t)
m(t) , where

Fθ , Fφ and Fr encompass all the forces acting on the kite,
including the aerodynamic force, the apparent force, the
gravitational force, and the tether traction force. The tether
traction force specifically acts as a simple elastic force, as
the tether is treated as a spring. In terms of the flight control
approach, we have chosen the strategy outlined in [6]. The
algorithm involves selecting two user-defined target points,
P+ and P−, in the (θ ,φ) plane. These points are used to
calculate a reference course for the kite at each time step
k ∈ Z of the digital control loop. At any given time, only
one target point is active, and the kite should be directed
towards that point. With the kite’s position and the active
target point, a lower controller determines the steering input
necessary for the kite to follow the correct trajectory.
The platform model follows the assumptions of linear
potential flow theory: the platform and its mooring
are modelled as a mass-spring-damper system with
the addition of specific hydrodynamic forces and
moments. This results in the following equation of
motion M ν̈(t) = Fh(t) + Fr(t) + Fexc(t) + Fm(t) + F t(t)
where ν(t) = [xP(t) yP(t) zP(t) ωxP(t) ωyP(t) ωzP(t)]

T are
the displacements (i.e., surge, sway and heave) and rotations
with respect to the platform centre of gravity, M ∈ R6×6

is the mass-inertia matrix, vector Fh ∈ R6 contains the
hydrostatic restoring force and moment, Fr the radiation
force and moment, Fexc the wave excitation force and
moment, Fm the mooring force and moment and F t the
tether traction force and moment applied on the platform.
NEMOH software [7] and a system identification procedure
are used to determine the hydrodynamic parameters. Finally
combining the two dynamic models, we can represent the
entire system as ˙x(t) = f (x(t),Fexc(t),W⃗ (t)) where x(t) =
[θ(t) φ(t) r(t) θ̇(t) φ̇(t) ṙ(t) xP(t) yP(t) zP(t) ωxP(t) ωyP(t)
ωzP(t) ẋP(t) ẏP(t) żP(t) ω̇xP(t) ω̇yP(t) ω̇zP(t)]

T and
Fexc(t), W⃗ (t) are the exogenous inputs due to the wave and
the wind.

III. ANALYSIS

As the two subsystems of offshore AWE are connected
by the tether, the traction force is the main point of contact
between the components and is the focus of our analysis.
Initially, we examined how the wave impacts the cable force
and the kite motion, emphasizing the distinctions between
onshore and offshore systems with different types of waves.
We specifically tested two wave intensities modeled with



Fig. 1: Bode diagram of the frequency response of yP w.r.t
the traction force y-component, and spectrum of the latter
for wave A and tether length L = 900 m.

the JONSWAP spectrum: the first wave (wave A) had a
significant height of 0.5 m and a peak wave period of 3.7 s,
while the second wave (wave B) was more intense with a
height of 2 m and a period of 7.5 s. The simulations revealed
that as the wave strength increases, so do the oscillations
of the tether force and the flight trajectory. However, the
system controllability and operability are still ensured for
the presented values.
In our analysis, we next looked at the platform resonances
to see if the main spectral components of tether force in
different directions closely match the platform resonance
peaks. We found that they may fall within the same range.
Specifically, when we examine Figure 1, we can see that in
the y direction, the resonance peak is at 0.0185Hz, which
corresponds to the principal component of the tether force.
This causes increased motion of the platform and poten-
tial damage to the structure. Further investigation revealed
that, with the chosen control approach, the overlap depends
on the length of the tether, as the flight frequency (and
consequently the traction force frequency) decreases with
increasing length.

IV. CONTROL APPROACH

Given the considerations of the previous section, we
propose a control approach to avoid excitation of the platform
resonances. The idea is to modify the flight control approach
by adjusting the length of the flown figure-eight trajectories
by suitably modifying the target points locations, P− and
P+, to indirectly regulate the frequency of the tether force
oscillations. To initiate this, we determine a desired path
frequency f ∗tra j away from the platform resonance peaks.
Using this value and the average kite speed v̄k, we calculate
the trajectory length as L∗

tra j = v̄k/f ∗tra j. Simultaneously, we
can estimate the trajectory length geometrically as Ltra j =
2(∆θ +∆φ)L. By further elaborating on the concept of ∆θ

and ∆φ with other computations on the kite eight-path,
we can link the definition of Ltra j with the target points.
Finally, by combining the equations for L∗

tra j and Ltra j, we
can determine the desired target points at each step. In
simulation, we tested this simple algorithm and found the

Fig. 2: Platform sway motion in wave A scenario, using L
= 1100 m.

control approach to be effective. Figure 2 demonstrates how
the platform sway motion is over 50% smaller compared to
the platform motion with the original control approach.

V. CONCLUSIONS

The analysis and simulations show that the intensity of
the waves and the resulting platform motion affect flight
paths, but the AWE system can still operate. However, there
is a possibility of significant platform movements, undesired
wing motion, increased loads and damage to floating com-
ponents due to potential overlap between tether frequencies
and spar resonances. In order to prevent this event from hap-
pening, we demonstrated how a simple change in the control
algorithm can effectively keep us away from resonances and
reduce the motion of the floating spar. Future research will
focus on the interaction between the kite and platform in
all operational phases of the AWE system, as well as new
control approaches to optimize the system’s performance.
Eventually, we will work on designing a custom platform
for offshore AWE.
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A Game-Theoretical Control Framework for Transactive Energy
Trading in Energy Communities

Nicola Mignoni, Juan Martinez-Piazuelo, Raffaele Carli,
Carlos Ocampo-Martinez, Nicanor Quijano, and Mariagrazia Dotoli

I. INTRODUCTION

As the advent of distributed energy resource technologies
has increased the independence of grid actors from central
power providers, the problem of efficiently controlling the
overall operational apparatus has not yet thoroughly been
solved [1]. The problem of distributed Generalized Nash
Equilibrium (GNE) computation in multi-agent systems has
recently received significant attention from game theoreti-
cal perspectives [2]. This abstract summarizes [3], which
extends [4], where the community members have private
cost functions coupled with each other through the monetary
price at which each member sells its energy. As the main
technical contribution, we provide sufficient conditions on
the private cost and energy pricing functions to ensure the
strong monotonicity of the overall pseudo-gradient mapping,
which is in turn a sufficient condition to guarantee the
convergence of the considered ADMM-type algorithm.

II. PROBLEM STATEMENT

Consider an energy community with N ∈ Z≥2 agents
indexed by the set A = {1, 2, . . . , N}. The interaction
and communication among agents is characterized by the
connected and undirected graph G = (A, E) with no self-
loops. We denote Ai = {j ∈ A : (i, j) ∈ E} as the set of
neighbors of agent i, and we let Ni = |Ai|. Every agent
i ∈ A is allowed to trade energy with its neighbors over
T ∈ Z≥1 with tk being a generic time slot and k ∈ T =
{1, 2, . . . , T}. For all (i, j, t) ∈ A×Ai ×T , let x̂ijt ∈ R≥0

denote the energy that agent i buys from agent j at time t, let
x̌ijt ∈ R≥0 denote the energy that agent i sells to agent j at
time t, and let pijt ∈ R≥0 denote the monetary price at which
agent i sells its energy to agent j at time t. For a feasible
energy trade, we need that x̂ijt = x̌jit and x̌ijt = x̂jit.
Let z be a placeholder notation for either x̂, x̌, or p, and
define the vectorization given by zij = col (zijt)t∈T , zi =
col (zij)j∈Ai

, z = col (zi)i∈A, and z−i = col (zji)j∈Ai
,

where ni = TNi and n =
∑

i∈A ni. Every agent i ∈ A is
thus responsible for computing its own decision (x̂i, x̌i,pi)
subject to the constraints given by (x̂i, x̌i) ∈ Xi, defining the
local constraint set of agent i, x̂i = x̌−i, and x̌i = x̂−i, pi ∈
Rni

≥0, imposing an agreement between neighbouring agents
regarding their energy trades. Therefore, the decision of agent
i is feasible only if (x̂i, x̌i,pi) ∈ Ωi (x̂−i, x̌−i) × Rni

≥0,
with Ωi (x̂−i, x̌−i) = {(x̂i, x̌i) ∈ Xi : x̂i = x̌−i, x̌i = x̂−i}.
Consequently, the set of feasible collective decisions for the
entire energy community is given by Ω × Rn

≥0, where Ω ={
(x̂, x̌) ∈

∏
i∈A Xi : x̂ = Bx̌

}
. Here, B = col (Bi)i∈A ∈

Bn×n, and Bi ∈ Bni×n is the (unique) matrix that satisfies
z−i = Biz, for any placeholder z ∈ {x̂, x̌, p} and all i ∈ A.
Based on the considered framework, every agent i ∈ A
computes its own decision (x̂i, x̌i,pi) to simultaneously
solve the optimization problems (OPs) given by

min
x̂i,x̌i

fi (x̂i, x̌i,pi,p−i) s.t. (x̂i, x̌i) ∈ Ωi (x̂−i, x̌−i) (1a)

min
pi

ρi
2
∥pi − gi (x̂−i)∥2 s.t. pi ∈ Rni . (1b)

Here, fi : R4ni

≥0 → R is the local cost function of agent i, ρi ∈
R>0 is a weighting parameter, and gi : Rni

≥0 → Rni

≥0 is the
(non-negative) local pricing function of agent i. Hence, solv-
ing the OP in (1a) yields the energy transactions that agent i
should execute to minimize its operational costs fi(·, ·, ·, ·),
whilst solving the OP in (1b) yields the energy-selling prices
of agent i. The GNEP for the energy community is to
compute a collective decision (x̂∗, x̌∗,p∗) ∈ Ω × Rn

≥0

such that fi
(
x̂∗
i , x̌

∗
i ,p

∗
i ,p

∗
−i

)
≤ fi

(
x̂i, x̌i,p

∗
i ,p

∗
−i

)
and∥∥p∗

i − gi

(
x̂∗
−i

)∥∥2 ≤
∥∥pi − gi

(
x̂∗
−i

)∥∥2, for all (x̂i, x̌i) ∈
Ωi

(
x̂∗
−i, x̌

∗
−i

)
, all pi ∈ Rni

≥0, and all i ∈ A. Such a
collective decision (x̂∗, x̌∗,p∗) is termed as a GNE for the
energy community. In this work, we focus on the so-called
variational GNE (vGNE) [5].

For all i ∈ A, the functions fi(·, ·, ·, ·) and gi(·)
are continuously differentiable, fi(·, ·,pi,p−i) is (jointly)
convex for every fixed (pi,p−i), and ∇x̂ifi (x̂i, x̌i, ·, ·)
and ∇x̌i

fi (x̂i, x̌i, ·, ·) are L̂i-Lipschitz continuous and
Ľi-Lipschitz continuous for every fixed (x̂i, x̌i), re-
spectively. Moreover, the pseudo-gradient q (x̂, x̌,p) = col (∇x̂ifi (x̂i, x̌i,pi,p−i))i∈A

col (∇x̌ifi (x̂i, x̌i,pi,p−i))i∈A
col (ρi (pi − gi(x̂−i)))i∈A

 ∈ R3n is µ-strongly

monotone. Finally, Ω is a closed convex set with a non-
empty relative interior. It follows that there exists a unique
vGNE for the considered energy community [5, Theorem
2.3.3]. Besides, from [6, Theorem 3.9] it holds that every
vGNE is also a GNE (yet the converse is not true in general).
Consequently, computing a vGNE is sufficient to solve the
considered GNEP. We provide sufficient conditions on the
functions fi(·, ·, ·, ·) and gi(·) to guarantee the µ-strong
monotonicity of the pseudo-gradient q(·, ·, ·).

Proposition 1: Suppose that every agent i ∈ A has
functions fi (x̂i, x̌i,pi,p−i) = ψi (x̂i, x̌i) + p⊤

−ix̂i − p⊤
i x̌i

and gi (x̂−i) = Qix̂−i + ri, where ψi : R2ni

≥0 → R is twice
continuously differentiable and θi-strongly convex in all its
arguments, Qi ∈ Rni×ni

≥0 , and ri ∈ Rni

≥0. Moreover, denote



θ = mini∈A θi and λ = maxi∈A λmax

(
Q⊤

i Qi

)
, and let

ρi = ρ ∈ R>0, for all i ∈ A. If there exists a µ ∈ (0, ρ) such

that θ − µ ≥ max{2, ρ2λ̄}
ρ−µ then the pseudo-gradient q(·, ·, ·)

is µ-strongly monotone.

III. THE PROPOSED APPROACH

We reformulate the OPs in (1) in an equivalent yet more
convenient form. Let yijt ∈ R be an auxiliary variable
to be computed by agent i, and define yij , yi, y, and
y−i. By introducing constraint x̌ijt = yijt, shared con-
straints can be equivalently stated as the four constraints:
x̂i = y−i, x̌−i = y−i, x̌i = yi, and x̂−i = yi.
As such, the decision of each agent i ∈ A now re-
gards the tuple (x̂i, x̌i,yi,pi) ∈ Ω̃i (y−i) × Φi (x̌i) ×
Rni

≥0, with Ω̃i (y−i) = {(x̂i, x̌i) ∈ Xi : x̂i = y−i} and
Φi (x̌i) = {yi ∈ Rni : yi = x̌i}. On the other hand, the
feasible set regarding such augmented decisions for the
entire energy community is given by Ψ × Rn

≥0, where
Ψ =

{
(x̂, x̌,y) ∈

∏
i∈A Xi × Rn : x̂ = By, x̌ = y

}
. Ψ is a

closed convex set with non-empty relative interior. For every
i ∈ A, the OPs in (1) can then be equivalently redefined as

min
x̂i,x̌i

fi (x̂i, x̌i,pi,p−i) s.t. (x̂i, x̌i) ∈ Ω̃i (y−i) (2a)

min
yi,pi

ρi
2
∥pi−gi (x̂−i)∥2 s.t. (yi,pi) ∈ Φi (x̌i)× Rni (2b)

Note that in contrast to the OP in (1a), for a given agent
i, the OP in (2a) is decoupled from the decisions x̂−i

and x̌−i of other agents, i.e., the inter-agent coupling
in (2a) is only due to variables p−i and y−i. There-
fore, simultaneously solving (2a) for all i and under a
fixed pair (y′,p′) is equivalent to solving the OP given
by minx̂,x̌

∑
i∈A fi

(
x̂i, x̌i,p

′
i,p

′
−i

)
subject to (x̂, x̌) ∈∏

i∈A Ω̃i

(
y′
−i

)
, which is separable over A. Similarly, the

inter-agent coupling in (2b) is only obtained through vari-
able x̂−i. Thus, simultaneously solving (2b) for all i and
under a fixed pair (x̂′, x̌′) is equivalent to solving the OP
given by miny,p

∑
i∈A

ρi

2

∥∥pi − gi

(
x̂′
−i

)∥∥2 s.t. (y,p) ∈∏
i∈A Φi (x̌

′
i) × Rni , which is separable over A as well.

Based on these observations, we remark that Gauss-Seidel
ADMM-type GNEP solving methods [7] can be applied to
the OPs in (2) following a three-block iterative scheme rather
than iterating over the total number of agents. Consequently,
in this paper, we adapt [7, Algorithm 4.1] to our framework.
For every agent i ∈ A, let ûi ∈ Rni and ǔi ∈ Rni be the
Lagrange multipliers associated to the coupling constraints
x̂i = y−i and x̌i = yi, respectively. Besides, define û, ǔ ∈
Rn. Let k ∈ Z≥0 denote the iteration index, and let x̂k, x̌k,
yk, pk, ûk, and ǔk, denote the values of the corresponding
optimization variables at iteration k. Applying [7, Algorithm
4.1] yields the (sequential) updates given by

(
x̂k+1, x̌k+1

)
= argmin

(x̂,x̌)∈X

{∑
i∈A

fi
(
x̂i, x̌i,p

k
i ,p

k
−i

)
+

[
ûk

ǔk

]⊤ [
x̂
x̌

]
+
γ1
2

∥∥∥∥[x̂− x̂k

x̌− x̌k

]∥∥∥∥2 + β

2

∥∥∥∥[x̂−Byk

x̌− yk
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}
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Fig. 1. Evolution of the selected performance metrics over 103 it-
erations. Without loss of generality, the initial condition is taken as
x̂0
i , x̌

0
i ,y

0
i ,p

0
i , û

0
i , ǔ

0
i = 0ni , for all i ∈ A.

(
yk+1,pk+1

)
= argmin

(y,p)∈R2n

{∑
i∈A

ρi
2

∥∥pi − gi

(
x̂k+1
−i

)∥∥2 −
[
ûk

ǔk

]⊤ [
By
y

]
+
γ2
2

∥∥∥∥[y − yk

p− pk
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2
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x̌k+1 − y

]∥∥∥∥2
}

[
ûk+1

ǔk+1

]
=

[
ûk

ǔk

]
+ β

[
x̂k+1 −Byk+1

x̌k+1 − yk+1

]
,

where X =
∏

i∈A Xi, and γ1, γ2, β ∈ R>0 are constant
parameters of the algorithm. If γ1, γ2, β ∈ R>0 and γ2
satifies that γ2 > (1/µ)

(
4β2 +

∑
i∈A

(
L̂2
i + Ľ2

i

))
, then

the iterations converge strongly to the unique vGNE of the
GNEP.

IV. AN ILLUSTRATIVE NUMERICAL SIMULATION

We illustrate the proposed framework through a numerical
simulation over a 24 hours period, i.e., T = 24, considering
an energy community comprised of 2 ERs, 9 prosumers, and
3 ESSs, i.e., N = 14. We consider a random undirected
topology plus a star graph with an ER as the central node.
Agents’ parameters are sampled from realistic energy pro-
ductions and consumption dataset. We let γ1 = β = 0.5, and
we set γ2 = 112. Figure 1 depicts the evolution of the per-
formance metrics m1[k] =

∥∥x̂k −Bx̌k
∥∥
∞ /

∥∥x̂1 −Bx̌1
∥∥
∞,

m2[k] = ∥ck − c∗∥∞/∥c1 − c∗∥∞, where c = col(x̂, x̌,p)
and c∗ = col(x̂∗, x̌∗,p∗) is the unique GNE of the energy
community.
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I. EXTENDED ABSTRACT

A. Introduction

The quest for energy efficiency and consumption control
is fundamental from an environmental perspective since fifty
percent of building energy consumption is used in Heating,
Ventilation, and Air-Conditioning (HVAC) systems [1]. Hence,
effective HVAC control techniques for energy consumption
minimization and thermal comfort guarantee have attracted the
attention of researchers. In order to simultaneously maximize
comfort and minimize energy consumption, it is essential to
manage the building network (district) in a way that optimally
balances real-time energy usage.

While existing regulations have initiated some changes, tra-
ditional penalty-based systems often fail to encourage full
user compliance. Emerging researchers advocate for integrating
blockchain technology, like proposing a novel system that
dynamically rewards or penalizes users based on their real-time
energy consumption. This approach promises enhanced security
and privacy, addressing key concerns in energy management [2].

Thus, our work introduces an innovative HVAC management
system connected with the District Energy Management System
(DEMS), building on our prior research on energy-efficient
systems and control methodologies [3], [4]. It classifies users
into Consumption Classes using a K-means clustering algo-
rithm, determining rewards or penalties based on their energy
consumption behavior, implemented through a blockchain plat-
form to ensure transparency and security. The novelty lies in
the integration of Model Predictive Control (MPC) combined
with a Long Short-Term Memory (LSTM) network [5], which
users can follow to achieve more virtuous energy consumption
classes. The proposed system architecture, depicted in Figure
1, leverages blockchain technology to securely handle dynamic
energy consumption data and optimize HVAC settings while
maintaining user comfort.

B. HVAC Control System

Our system architecture contemplate an HVAC control system
at the DEMS level to enhance user management of HVAC
consumption. The system architecture, illustrated in Figure 1,
outlines its primary components.

The DEMS acquires the electricity invoice from the energy
supplier at the conclusion of the billing cycle, along with data
concerning weather conditions, calendar days, and legal con-
straints. This data is notarized via transactions on a blockchain
platform to ensure integrity and transparency. Concurrently,
IoT devices transmit the states of the HVAC systems, such
as thermostat setpoints and operational intervals, which are
dynamically monitored and stored on the blockchain.

1Department of Electrical and Information Engineering, Polytechnic Univer-
sity of Bari, 70126 (BA) Bari, Italy. g.olivieri@phd.poliba.it; (gaetano.volpe,
agostinomarcello.mangini, mariapia.fanti)@poliba.it.

The blockchain is utilized to classify users into different
Consumption Classes at the end of each billing period, reward-
ing efficient energy use and penalizing inefficient consump-
tion. Classifications are performed using a K-means clustering
algorithm; rewards and penalties are determined accordingly.
The blockchain further automates the payment process based
on the user’s classification, ensuring transparency and reducing
administrative overhead.

To guide users in improving their consumption class, a
MPC strategy is employed. The MPC calculates the optimal
thermostat setpoints for the HVAC system and determines the
intervals during which the system should be activated or deacti-
vated. Combined with a LSTM network that predicts indoor
temperatures and energy consumption, the proposed system
facilitates real-time HVAC management, ensuring user comfort
while minimizing energy usage.

This integrated approach enables a fine-grained control mech-
anism that dynamically adjusts to both user behavior and exter-
nal factors, thereby aligning with broader energy optimization
goals.

DEMS     

classification

Blockchain

. . .

MPC MPC MPC
. . .

energy, electricity bill

paymentnotarization

Energy
Supplier

Weather 
conditions

Calendar
 days

Limitations provided
by laws

HVAC system HVAC system HVAC system

energy

Fig. 1: System Architecture

Moreover, by integrating Smart Contracts, the blockchain
automates user classification into Consumption Classes and
processes payments based on energy consumption behavior, as
outlined in our more complete study [4]. This decentralized
approach mitigates the risk of data tampering and enhances the
reliability of the overall system.

C. District User Clustering and Class Follower Problem
The proposed HVAC control system not only monitors but

also strategically categorizes users within the district into spe-
cific Consumption Classes. The K-means clustering algorithm
that performs the categorization classifies users relying on fea-
ture metrics such as average indoor temperature, relative outdoor
temperature, thermostat settings, and HVAC operational times.
As illustrated in Figure 2, the algorithm partitions users into
clusters, each corresponding to a distinct Consumption Class,
ranging from the most efficient to the least.

Each class carries specific rewards and penalties to encourage
energy-efficient behaviors. Users in more virtuous classes bene-
fit from lower energy costs, while those in less virtuous classes
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Fig. 2: K-means clustering

face higher penalties. These classifications are dynamically
updated and securely recorded on the blockchain platform,
which is a pseudonym, ensuring transparency and accuracy.

To help users improve their energy consumption profile, we
introduce the Class Follower Problem (CFP). This problem is
addressed using a MPC strategy, which determines the optimal
thermostat settings and HVAC operational intervals. By adhering
to the MPC guidelines, users can modify their consumption
patterns to achieve the class standards of more energy-efficient
groups.

By training the LSTM network on historical and environ-
mental data, the system achieves a higher degree of accuracy,
as it predicts indoor temperatures and energy consumption, thus
enabling the MPC to make data-driven adjustments that optimize
both energy usage and comfort levels.

Leveraging these advanced technologies within the
blockchain environment provides a secure and efficient method
for HVAC management across the district. Our architecture
ensures a cohesive flow from data collection and user
classification to real-time control, thereby optimizing energy
consumption while ensuring user comfort and satisfaction.

Overall, the district-level application of the proposed HVAC
control system aligns with broader energy efficiency goals,
adapting dynamically to user behaviors and external factors. The
synergy of blockchain, K-means clustering, MPC, and LSTM
networks offers a comprehensive solution for modern smart
cities and energy management systems, fostering sustainable
practices and efficient energy consumption.

D. Control System Design and Simulation

At the core of the system, LSTM networks are utilized
to predict the thermodynamic behavior of buildings. These
networks are trained using historical data related to indoor
and outdoor temperatures, thermostat setpoints, and HVAC
operational states. The LSTM models accurately forecast future
indoor temperatures and energy consumption, enabling more
informed control decisions.

The control system’s effectiveness is validated through simu-
lations using EnergyPlus, a building energy simulation software.
In these simulations, the algorithm’s capacity to manage energy
consumption and maintain thermal comfort in various scenarios
is tested. The use of LSTM networks enhances the system’s
responsiveness to changing conditions, while the MPC ensures
that the HVAC operations remain within optimal bounds.

This integrated approach allows users to transition to more
virtuous energy consumption classes by following the guidelines
of the control system. The system provides a clear pathway for

users to achieve energy savings and improve their classifica-
tion by modifying their HVAC usage behaviors based on the
recommendations provided.

The control system exemplifies the potential of combining
predictive analytics with real-time optimization techniques to
achieve significant improvements in energy management within
smart districts. Our work shows the feasibility and benefits of
advanced machine learning and control strategies for sustainable
HVAC management.

E. Case Study & Conclusions
The case study presented in our work validates the proposed

control system integrated with DEMS in a district in Bari,
Italy. The area comprises 2000 users and their respective HVAC
systems, all connected to a centralized management system.
Data on each user’s energy consumption, including thermostat
setpoints and operational intervals, were collected over a billing
period and processed using the proposed K-means clustering
algorithm.

The users were categorized into five distinct Consumption
Classes based on their energy consumption behaviors: Small,
Good, Normal, Nearly Bad, and Bad. These classifications were
then used to assign rewards or penalties. Initially, a user classi-
fied in the Nearly Bad class aimed to improve their classification
to the Good and Normal classes in separate scenarios.

The implemented MPC strategy, supported by the LSTM-
based predictive model, optimized the user’s HVAC settings
to help achieve the desired class improvement. The control
mechanism demonstrated effective tracking of the target classes,
adjusting thermostat setpoints and HVAC operational times
dynamically. This resulted in significant energy consumption
reductions while maintaining indoor temperature comfort within
acceptable ranges.

The class tracking error showed convergence to minimal
residual errors, suggesting a robust adaptation to user behavioral
changes. Energy consumption data revealed that users following
the system’s recommendations could transition to more virtuous
energy classes, consequently lowering their energy costs.

In conclusion, this work successfully integrates blockchain
technology, MPC, and LSTM networks to enhance HVAC
system management at the district level. The combined approach
provides a transparent, secure, and dynamic method for opti-
mizing energy consumption, aligning with broader sustainability
goals. The case study in Bari illustrates the practical applicabil-
ity and benefits of the proposed system, achieving both energy
efficiency and user comfort.

Future work involves scaling to larger districts, integrating
renewable energy, and conducting seasonal tests.
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EXTENDED ABSTRACT
Modeling and Predictive Control of District Heating Systems

via Physics-Informed Recurrent Neural Networks

Laura Boca de Giuli, Alessio La Bella and Riccardo Scattolini

Abstract—This work proposes a novel methodology to identify
the model of a district heating system (DHS) exploiting physics-
informed neural networks. The approach consists in leveraging
multiple recurrent neural networks (RNNs) and in embedding
the physical topology of the DHS within their interconnections.
Compared to standard RNNs, this modeling technique enables
faster training and higher accuracy. The developed approach
paves the way for the design of a nonlinear model predictive
control (NMPC) strategy, allowing to minimize production costs,
enhance system efficiency and ensure compliance with operational
constraints across the entire DHS.

I. INTRODUCTION

DHSs are recognized as crucial for achieving energy transition
objectives due to their high efficiency. Traditionally, these sys-
tems are operated using rule-based control strategies, which do
not fully exploit their efficiency potential, highlighting the need
for advanced optimization-based control strategies. To develop
advanced schemes such as NMPC, an accurate model of the
system is needed. Purely physics-based models require a large
number of parameters [1], often leading to intractable complex
models. Conversely, purely data-based models typically lack
physical insights, which may result in unreliable models. Given
that DHSs are characterized by a large amount of operational
data and a known network topology, a novel physics-informed
machine learning (PI-ML) [2] methodology is here proposed.
This consists in interconnecting different RNNs according to the
DHS topology and in jointly learning them from data though
a unique training procedure. This physics-informed RNN (PI-
RNN) method shows enhanced modeling performance with re-
duced complexity compared to standard RNN models. Moreover,
the proposed modeling approach can be effectively employed
to design an NMPC regulator, minimizing production costs and
increasing system efficiency while respecting the desired opera-
tional constraints across the whole DHS network. The presented
approach is tested on a known DHS benchmark [1], yielding
promising results from both modeling and control perspectives.

II. SYSTEM DESCRIPTION

A DHS typically comprises the following components: i) the
supply network, where high-temperature water flows from the
heating station to the thermal loads, ii) the return network, where
cold-temperature water flows from the thermal loads back to
the heating station, iii) the heating station, which absorbs water
from the return network and injects it at a higher temperature
into the supply network, and iv) the thermal loads, which absorb
water from the supply network and inject it back into the return
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Fig. 1: (a) Schematic representation of the AROMA DHS [1];
(b) PI-RNN architecture for the AROMA DHS.

network. Given that the topology of a DHS is generally well-
known, it can be represented as a structured graph G = (N , E),
where N denotes the set of nodes and E ⊆ N×N represents the
set of edges, with n = |N |. Moreover, Nc is defined as the set
containing all nodes with thermal loads. Each node represents an
element of the DHS, such as a thermal load, the heating station,
or a junction among multiple pipes, and includes connections
to both the supply and return networks. The edges represent
the physical interactions among the system nodes. For each ith
node, the set of inlet neighbors, i.e., the ones having a physical
influence on it, is denoted by Ii = {j ∈ N | ∃ (j, i) ∈ E}. The
case study analysed in this work is the AROMA DHS [1], whose
graphical representation is shown in Fig. 1(a). The controllable
input is the heating station supply temperature, T s

0 , while the
thermal load demands {P c

i }∀i∈Nc represent the disturbances.
Overall, the system input is u = [T s

0 , {P c
i }′∀i∈Nc

]′. The se-
lected outputs are instead y = [T r

0 , q0, P0, {T s
i , T

c
i , q

c
i }′∀i∈Nc

]′.
Specifically, T r

0 , q0 and P0 are the heating station return temper-
ature, water flow, and power, respectively. T s

i , T c
i and q c

i are
the supply temperature, output temperature, and water flow of
each thermal load, respectively. The detailed physical modeling
of the considered DHS benchmark is available in [1].

III. PHYSICS-INFORMED RECURRENT NEURAL NETWORK

To develop a data-based model of a DHS, RNNs are used,
being particularly suitable to approximate nonlinear dynami-
cal systems due to their universal approximation capabilities.
However, purely data-based identification approaches may lack
physical insights, leading to unreliable models. A novel PI-ML
algorithm is here proposed. Unlike many PI-ML approaches
that incorporate known mathematical relationships into the loss



function for training the RNN [2], the proposed method leverages
the physical information regarding the DHS topology. This
physics-informed RNN (PI-RNN) methodology involves inter-
connecting different RNNs according to the physical structure
of the system, so that the overall PI-RNN architecture resembles
the DHS topology, as depicted in Fig. 1(b). In other words, each
node of the system (e.g., each thermal load) is paired with a
corresponding submodel Mi, reading as

Mi :

{
xi(k + 1) = fi(xi(k), vi(k); Θi)

yi(k) = gi(xi(k), vi(k); Θi)
, (1)

where fi and gi are generic functions, xi ∈ Rnxi , vi ∈ Rnvi and
yi ∈ Rnyi are the ith submodel state, input, and output variables,
respectively, and Θi is the vector of parameters that must be
tuned during the identification procedure. Each Mi is designed
to have as input vi = [ui, {y[j]}′∀j∈Ii

]′, which includes its local
inputs ui and the output variables of its inlet neighbor submodels
{y[j]}∀j∈Ii

, so as to embed the physical influence among the
DHS nodes. Thus, the submodels Mi are interconnected accord-
ing to the DHS topology defined by G = (N , E). Introducing
x = {xi}ni=1 ∈ Rnx , u = {ui}ni=1 ∈ Rnu , y = {yi}ni=1 ∈ Rny ,
Θ = {Θi}ni=1, the overall PI-RNN model reads as

M :

{
x(k + 1) = f(x(k), u(k); Θ)

y(k) = g(x(k), u(k); Θ)
. (2)

Finally, the developed physics-informed model M of the DHS
is learned from data through a unique training procedure. More
details on the proposed methodology are available in [3].

IV. NONLINEAR MODEL PREDICTIVE CONTROL

To optimally operate the DHS, an NMPC strategy is formu-
lated, exploiting the PI-RNN model. Considering a sampling
period τs and a prediction horizon of N steps, the following
problem is solved at each time instant t = ksτs, with ks ∈ N:

min
T s
0 (·)

ks+N−1∑
k=ks

(cel(k)P0(k)/η) (3a)

subject,∀ k ∈ {ks, . . . , ks +N − 1}, to (2) and
x(ks) = x̂0, (3b)
y ≤ y(k) ≤ y. (3c)

The cost function (3a) minimizes the production cost of the
heating station, taking into account the time-varying price cel
and the heating station’s thermal efficiency η. The system state
x must be initialized at each NMPC iteration with x̂0, estimated
by a properly designed observer, as evident from (3b). Finally,
(3c) is included to comply with temperature and power limits.

V. CASE STUDY

The proposed modeling and control approaches are tested in
simulation on the AROMA DHS [1]. To accurately identify the
system dynamics, a dataset of input-output samples is collected.
A PI-RNN is compared to a standard RNN, specifically em-
ploying the Gated Recurrent Unit (GRU) network. Both models
are trained with a 15690-sample dataset over 1500 epochs. Fig.
2(a) shows the comparison between the FIT trend of a 54-state
standard GRU and a PI-GRU one, witnessing that the PI-GRU

0 500 1000 1500
0

20

40

60

80

100

(a)

0 100 200 300 400 500
0

2

4

(b)

0 100 200 300 400 500
0

2

4

(c)

Fig. 2: (a) FIT trend of a standard GRU (orange) and of a PI-
GRU (yellow); (b) q c

5 identified by the standard GRU (orange)
with respect to the measured value (blue); (c) q c

5 identified by
the PI-GRU (orange) with respect to the measured value (blue).

TABLE I: Comparison among the adopted control strategies.

Cp tavg Ploss

NMPC (PI-GRU) 881.4 C 17 s 10.4 kW
NMPC (standard GRU) 907.2 C 40 s 16.0 kW

Rule-based strategy 936.8 C - 32.0 kW

achieves better fitting performance (FIT = 83.6% against 54.5%)
and faster training (91 minutes against 145). As also evident
from the predicted trends of some output variables, the PI-GRU
(Fig. 2(c)) outperforms the standard GRU (Fig. 2(b)). Finally,
Table I shows that an NMPC using a PI-GRU model is superior
in terms of production costs (Cp), thermal losses (Ploss) and
computational time (tavg) reduction compared to an NMPC using
a standard GRU and to a rule-based strategy with fixed supply
temperature.

VI. CONCLUSIONS

A novel PI-ML methodology is proposed for DHSs. It is
shown that interconnecting multiple RNNs by resembling the
DHS topology leads to significant improvements in terms of
faster training procedures and higher identification accuracy
compared to traditional RNNs. The developed PI-RNN model
is leveraged for the design of an NMPC, able to minimize
production costs, increase system efficiency and adhere to oper-
ational constraints across the entire DHS. Future work includes
extending this approach to generic networked systems (e.g.,
electrical networks, chemical plants) and developing a training
procedure to enforce stability properties in the learned models.
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A dual bisection approach to economic dispatch of generators with
prohibited operating zones

Lucrezia Manieri, Alessandro Falsone, Maria Prandini

I. INTRODUCTION

Unit Commitment (UC) and Economic Dispatch (ED)
are crucial for power systems operation. UC [1] determines
which generating unit will be possibly activated to satisfy
a forecasted electricity demand along some reference time
horizon, while ED [2] allocates the demand in each time slot
by defining the actual amount of power that each committed
generator has to produce in that time slot. The Economic
Dispatch Problem (EDP) can be solved after the UC problem
or jointly, in an integrated manner.

In this work, we address EDPs that aim at minimizing the
cost of supplying the required energy demand via generators
with prohibited operating regions. Following [3], we adopt
a formulation comprising continuous and binary decision
variables, quadratic cost, non-convex local constraints, and
a scalar quadratic coupling constraint accounting for power
losses. Due to the presence of binary variables, the problem
has a combinatorial complexity that makes its resolution
challenging and calls for suitable resolution schemes. Here,
we propose a duality-based approach integrating the bisec-
tion iterative scheme in [4] to tackle computational complex-
ity, while guaranteeing finite time feasibility of the primal
iterates and a cost that is not increasing throughout iterations.

II. PROBLEM FORMULATION

We consider an EDP with m generator units, each pro-
ducing a power Pi ≥ 0, which is zero if the generator i does
not participate in the energy provision at the considered time
slot and is positive otherwise.

The cost Ji for unit i to produce an amount of power Pi

is given by the quadratic cost function

Ji(Pi) = ωi0 + ωi1Pi + ωi2P
2
i , (1)

where ωi0, ωi1 and ωi2 are positive scalar coefficients spe-
cific for generator i, for i = 1, . . . ,m.

Generators can have prohibited zones within their domain
of operation due to physical limitations of individual power
plant components (e.g. avoiding amplification of the vibra-
tions in a shaft bearing). Thus, each power Pi will satisfy
(only) one of the following conditions

Pi = 0, (2a)
P i,j ≤ Pi ≤ P̄i,j for some j ∈ {1, . . . , Ni} , (2b)

where [P i,j , P̄i,j ], j = 1, . . . , Ni are operating regions such
that P i,1 = Pmin

i > 0, P̄i,Ni
= Pmax

i > Pmin
i , P i,j < P̄i,j ,

The authors are with the Dipartimento di Elettronica Informazione e
Bioingegneria, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.
Email: name.surname@polimi.it.

and P̄i,j−1 < P i,j . Condition (2) can be translated into a set
of linear inequalities by adding Ni auxiliary binary decision
variables, one per each interval j = 1, . . . , Ni, that are set
to 1 if Pi belongs to the j-th allowed power interval, and 0
otherwise. The operation may also be subject to ramp limits,
which typically require

−∆i ≤ Pi − Pi,0 ≤ ∆̄i, (3)

where Pi,0 denotes the power provided by generator i in
the previous time slot, whilst ∆̄i > 0 and ∆i > 0 denote
the maximum power increase or decrease, respectively, that
generator i can allow. Finally, in order to meet a certain
power demand Pd ≥ 0, all generators should satisfy the
following (scalar) constraint

m∑
i=1

Pi − Pℓ(P⃗ ) ≥ Pd, (4)

that accounts also for power losses Pℓ(P⃗ ), with P⃗ =
[P1 · · · Pm]⊤, which can be computed using Kron’s loss
formula [5, Section 7.7] as

Pℓ(P⃗ ) =
m∑
i=1

m∑
j=1

bijPiPj +
m∑
i=1

bi0Pi + b00, (5)

with bij , bi0, b00, i, j = 1, . . . ,m, being suitable coefficients.
The resulting optimization problem is thus given by

min
P1,...,Pm

m∑
i=1

Ji(Pi) (6a)

subject to:
m∑
i=1

Pi − Pℓ(P⃗ ) ≥ Pd (6b)

Pi ∈ Pi i = 1, . . . ,m, (6c)

where Pi is the set of feasible power outputs for generator i
defined by (2)-(3), and Ji(Pi), Pℓ(P⃗ ) defined in (1) and
(5) respectively. Problem (6) has a quadratic cost (6a),
a quadratic global constraint (6b) involving the decision
variables of all generators, and m local constraints (6c), each
involving the power of a single generator. Since the local
set Pi is the intersection between an interval and a union
of disjoint intervals arising from commission/decommission
and prohibited zones, (6) is a non-convex problem, which is
difficult to solve. In this work, we leverage the scalar nature
of the global constraint (6b) to reduce the computational
complexity and compute a solution of (6).

III. PROPOSED APPROACH

It is easy to show that (6) fits the framework addressed
in [4] and, hence, it can be solved via the dual bisection



Algorithm 1 Bisect EDP
1: λ← 0 , λ̄← λstart in (9)
2: P⃗ ← argmin{Pi∈Pi}mi=1

L(P⃗ , λ̄)

3: if
∑m

i=1 Pi − Pℓ(P⃗ ) = Pd then
4: return P⃗
5: end if
6: P⃗best ← P⃗
7: repeat
8: λ̂← 1

2

(
λ̄+ λ

)
9: P⃗ ← argmin{Pi∈Pi}mi=1

L(P⃗ , λ̂)

10: if
∑m

i=1 Pi − Pℓ(P⃗ ) = Pd then
11: return P⃗
12: else if

∑m
i=1 Pi − Pℓ(P⃗ ) > Pd then

13: P⃗ best ← P⃗
14: λ̄← λ̂
15: else if

∑m
i=1 Pi − Pℓ(P⃗ ) < Pd then

16: λ← λ̂
17: end if
18: until some stopping criterion is met
19: return P⃗best

(DualBi) algorithm proposed in [4]. The approach leverages
Lagrangian duality to lift constraint (6b) to the cost function
and turn problem (6) from a quadratically constrained non-
convex program into a program that is still non-convex
but with a quadratic cost function only. This is done by
introducing a (single) Lagrange multiplier λ ≥ 0, which
allows to define the Lagrangian function

L(P⃗ , λ) =
m∑
i=1

Ji(Pi) + λ
(
Pd + Pℓ(P⃗ )−

m∑
i=1

Pi

)
, (7)

and pose the dual problem

max
λ≥0

φ(λ) = max
λ≥0

min
{Pi∈Pi}m

i=1

L(P⃗ , λ). (8)

which is convex, despite (6) is non-convex, and scalar.
The dual problem (8) can be, thus, solved via the bisection

method introduced in [4], that takes advantage of the scalar
nature of the dualized constraint to compute a feasible primal
solution in finite time.

The procedure is reported in Algorithm 1. The bisection
starts with an interval [λ, λ̄] = [0, λstart] (cf. Step 1), where

λstart =

∑m
i=1

(
Ji(P̃

max
i )−minPi∈Pi

Ji(Pi)
)

∑m
i=1 P̃

max
i − Pℓ(

⃗̃Pmax)− Pd

(9)

is selected according to [4, Theorem 2] to ensure that the
optimal dual solution λ⋆ of (8) is contained in the interval
[0, λstart]. A first feasible power allocation P⃗ is computed by
minimizing the Lagrangian in (7) with λ = λ̄ = λstart (cf.
Step 2). If such allocation matches the demand Pd exactly
(cf. Step 3), then it is also optimal and is readily returned in
Step 4; otherwise, it is saved as the current best allocation
P⃗best in Step 6 and the algorithm proceeds to the bisection
loop (cf. Steps 7-18).

At each bisection iteration, a new allocation P⃗ is obtained
by minimizing the Lagrangian in (7) for λ = λ̂ (cf. Step 9),
with λ̂ midpoint of the interval [λ, λ̄] (cf. Steps 8). If such
allocation meets the demand Pd exactly (cf. Step 10) it is
readily returned in Step 11. Otherwise, the extreme points
λ, λ̄ are updated based on whether constraint (6b) has been

Unit GA [7] PSO [3] Bi-B&B [8] Algorithm 1

P1 474.81 447.50 447.40 447.08
P2 178.64 173.32 173.24 173.19
P3 262.21 263.47 263.38 263.93
P4 134.28 139.06 138.98 139.06
P5 151.90 165.48 165.39 165.58
P6 74.18 87.13 87.05 86.63

∆J(·) 1.0 · 10−3 4.2 · 10−4 −2.6 · 10−5∗
1.5 · 10−9

E(·) 3.7 · 10−4 3.8 · 10−4 −2.4 · 10−5∗ 1.5 · 10−9

TABLE I
COMPARISON OF THE SOLUTION OBTAINED VIA ALGORITHM 1 WITH

THOSE OBTAINED BY STATE-OF-THE-ART COMPETITORS ON AN IEEE
BENCHMARK PROPOSED IN [3]. THE SOLUTION MARKED WITH ∗

VIOLATES THE AGGREGATE DEMAND CONSTRAINT.

over-penalized (c.f. Steps 12-14) or under-penalized (c.f.
Step 15-16). The loop continues until some stopping criterion
is met (e.g. when the length of the interval [λ, λ̄] falls below
a certain threshold). Whenever the loop stops, the algorithm
returns the best allocation found P⃗best (cf. Step 19).

The procedure is guaranteed to either converge to an
optimal primal solution in a finite number of iterations or
generate a sequence of feasible primal solutions with non-
increasing cost (see [6, Theorem 1] for more details).

IV. NUMERICAL SIMULATION

Numerical simulations on IEEE benchmark EDPs de-
scribed in [3, Section V.A] show that the approach outper-
forms state-of-the-art competitors, including stochastic (pos-
sibly hybrid) heuristic methods [3], [7] and exact resolution
schemes based on implicit enumeration [8]. Table I shows
the results obtained for a benchmark with m = 6 generators.
State-of-the-art strategies provide solutions that either yield
a higher production cost or do not meet the aggregate power
demand.

Tests on randomly generated instances with increasing
size show that the proposed approach is scalable and able
to compute near-optimal solutions consistently. We refer the
reader to [6] for more details.
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Symbolic regression for industrial applications:
an NN-based approach
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I. INTRODUCTION

Symbolic regression (SR) is a machine learning technique
that aims to discover the underlying relationship between input
and output values by examining the space of all mathematical
formulas and selecting the equations that best fit the data.
The search space is defined by combinations of input features,
admissible mathematical operators and the continuous set of
numerical constants. The ultimate goal of SR is to produce
interpretable solutions that can be trusted and to enable in-
formation sharing between experts, as the model can benefit
from heuristic knowledge from humans in the loop. Moreover,
it can provide new insights about the system under study. SR
is usually implemented using Genetic Programming (GP), a
computational technique originally proposed by Koza [1]. This
method iteratively generates solutions to minimize a given
cost function, evolving random equations over generations.
SR-based models can be used to develop interpretable soft
sensors (SS), which serve to estimate process variables from
the available input data. Such models find many applications
in the process industry when the quantities of interest are
hard to measure, require expensive equipment, or are subject
to physical constraints that would delay the measurement
process [2]. It is important to underline that SS design
process, to extract the dynamics of the modelled process,
often relies on both current and past values of inputs and
previous system outputs, significantly increasing the problem’s
dimensionality. Conventional GP frameworks, such as PySR
[3] used in this work, struggle to find an optimal solution
for problems with many features, as each input regressor
exponentially expands the search space. One possible solution
is to use dimensionality reduction algorithms such as principal
component analysis (PCA). However, this would inevitably
worsen the interpretability of the model, which is the main
focus of SR. An alternative approach, here proposed, consists
of using a neural network to reduce a complex problem
with high dimensionality into smaller problems with sparse
inputs that can be fitted separately. The proposed approach is
therefore able to extend SR to high-dimensional datasets by
using precisely engineered neural networks. This concept was
originally introduced in [4] and extended to soft sensors for
dynamical systems in the present study, where the NN is used
to capture the system dynamics of each input and formulate

The research has been developed under the Italian PRIN MUR
Project “Green SENSing systems based on Bacterial Cellulose (SENSBC)”
PRIN 2022HSYJEF 002, CUP: J53D23003460006.

an encoding of these dynamics using SR to express the output
in terms of the generated encodings.

II. SULFUR RECOVERY UNIT DESCRIPTION

Two SSs were designed using the proposed methodology
to model a sulfur recovery unit (SRU) located in a refinery
plant in Sicily, Italy. The two models aim to estimate the
concentration of hydrogen sulfide (H2S) and sulfur dioxide
(SO2) in the tail stream of the industrial plant. This industrial
process has already been used as a benchmark for different
methods in other works [5]–[7]. The process has five inputs
which are the MEA and SWS gas flows, the corresponding
air flows AIR MEA and AIR SWS, and a further airflow input
AIR MEA 2. An online analyzer measures the concentration
of both gases to regulate the ratio of air to feed to maximize
sulfur extraction. In addition, a closed-loop control system
regulates an additional air flow (AIR MEA 2) based on the
tail gas composition, which improves the control mechanism.
However, acid gases damage the chemical sensors over time,
which requires frequent maintenance. While maintenance does
not interrupt the operation of the system, it disables the
additional airflow mechanism, which degrades the overall
performance. An SS could replace the physical sensor during
maintenance phases and also provide redundant estimates for
fault detection.

III. RESULT SUMMARY

The Sulfur line 4 was chosen for this work [2]. The available
data consists of 17,264 samples obtained with a sampling
time of one minute. These were divided into training (70%),
validation (15%) and test sets (15%), taking into account
temporal dependencies within the process when moving the
data and normalizing each set using z-score normalization.
A block diagram of the NN used is shown in Figure 1.
To simplify the structure, a small number of neurons was
used in the fully connected encoding hidden layers. The
predictions of the encoding layers on the training dataset were
recorded and used as target values for the PySR framework,
resulting in five different models, one for each encoded
input. The operators considered in the fitting process are
+,−, ∗, /, sin, exp, sqrt, tan, sinh, tanh and real constants,
setting the maximum length to 30. Each operator was assigned
a weight of 1, and some combinations of operators were
prevented that would be either redundant or uninterpretable,
such as sin(tanh(x)) or sin(sin(x)). Both the H2S and the
SO2 input encodings are given in Eq. 1 and 2, respectively.



e1,H2S = (0.01u1 + 0.1)(2.5u1 + 1.8u1z
−5 − 5.3u1z

−9
) − 0.04

e2,H2S = 0.1u2 + 0.1u2z
−9

+ 0.1 sin(u2z
−3 − 0.4(0.6 − u2z

−1
)
2
)

e3,H2S = 0.36 sin(u3z
−7 − u3z

−5
+ u3z

−9
+ tan(u3 − 1.2u3z

−5
))

− 0.14

e4,H2S = −0.36 tanh

(
0.11

u4

)
tanh

((
0.1

u4z−7
− u4 − u4z

−1

)2

− u4

)
(u4z

−
3 + 1.16)

e5,H2S = − tanh (u5z
−3 − u5 + sin(0.5u5z

−7
+ 0.5u5z

−9 − u5) + 1.2)

+ 0.11
(1)

e1,SO2
= 0.27u1z

−9 − 0.27u1z
−1 − 0.02 sin(2.15in1z

−9 − 0.66)

+ tanh (u1 + u1z
−5 − 2u1z

−9
+ 0.13)

e2,SO2
= 0.21 tanh

(
0.47 − sin(u2z

−5
+

u2z
−9(u2z

−3 − u2z
−7

u2z−3

)
e3,SO2

= tanh(sinh(u3 − u3z
−9

+ (u3z
−1 − u3z

−7
)
2

− exp(−u3 + 1.7u3z
−3

))

e4,SO2
= 0.08 sin((u4z

−9
)
2
) + 0.2 sin

(
1.5u4z

−7 −
0.2

u4

)
− tanh(u4 − u4z

−3 − u4z
−5

+ u4z
−9

)

e5,SO2
= tanh(0.67u5 − 0.38u5z

−5 − 0.29u5z
−9

+ 0.45) + 0.17u5z
−5

− 0.17u5z
−3

(2)

This shows that the two networks produce slightly different
equations which could also be an indication that the input
dynamics affect the two concentrations differently. The equa-
tions are expressed in terms of the same input ui, where
i ∈ [1, 5], at different time shifts. For a more compact
notation, the temporal shifts are indicated using the unary
delay operator z−1, which means that ui(t)z

−k = ui(t − k),
where k ∈ [0, 1, 3, 5, 7, 9] to reflect the considered time shifts
as adopted in [2]. Each equation was selected from a hall of
fame list ordered by complexity (number of terms). To give
preference to simpler equations for better interpretability, the
equation that maximizes the index J was selected :

J =
−∆ log(MSE)

∆c
(3)

where MSE is the mean squared error, c is the candidate
solution complexity, which may be expressed as O ·w, where
O is the set of involved operators and w is the associated cost.
The output relationships were discovered using the same set of
functions and hyperparameters, with the only modification be-
ing the maximum length, set to 50 to allow further exploration
of the mathematical search space. The equations for H2S and
SO2 concentration are presented in Eq. 4, where the terms ei
in the equations, each refer to the relative encoded product of
the NN for the five input signals.

[H2S] = 0.51

(
exp

(
0.4e3

1 − e5
− 0.8e1 + 0.4e5 + tan(e5)

))2

[SO2] = 0.04sinh(e1 + 0.46) + 0.04tanh
2
(e3) + 0.3 − 0.46(e5)

(4)

To properly compare the NN-aided SR and the plain SR
approach, two models were also fit with the same previously
introduced hyperparameters.

As shown in Table I and Figure 2, both the NN and NN-
supported SR methods show superior performance. It can be

Fig. 1. Block diagram for the utilized NN architecture.

R2 RMSE

NN (0.89,0.91) (0.014,0.0002)
SR (0.77, 0.86) (0.02, 0.017)

NN-SR (0.89, 0.90) (0.014, 0.014)

TABLE I
LOSS METRICS FOR THE THREE CONSIDERED APPROACHES ON THE TEST

DATASET. THE PERFORMANCES FOR BOTH MODELS ESTIMATING THE H2S
AND THE SO2 ARE GIVEN IN PARENTHESES.

seen, especially in the presence of peaks, which are of greater
importance for controlling the process the temporal evolution
of the S02 reported in Figure 2 (b) shows a better approx-
imation of the NN-SR in the peak estimation compared to
the plain SR. Moreover, the NN and NN-SR predictions show
similarities due to the partially shared dynamic encodings. To
summarise, the proposed approach makes it possible to de-
velop interpretable soft sensors with comparable performance
to other state-of-the-art black-box approaches.

Fig. 2. Predictions of NN, SR, and NN-aided SR on a portion of the test
dataset.
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On the Existence of Equilibria in Learning-Based Games
Paolo Scarabaggio, Nicola Mignoni, Raffaele Carli, and Mariagrazia Dotoli

I. INTRODUCTION

Convexity (or concavity) is the cornerstone of equilibrium
theory. From the first works by Von Neumann, mathematical
elegance and theoretical tractability have steered multi-agent
decision-making models in the safe harbor of convexity. Under
this assumption, computing equilibria is, in fact, equivalent to
convex programming [1].

The search for convexity at all costs has recently gone
against the advent of machine learning (ML) with its inherent
and pervasive non-convexity [2]. Indeed, ML’s attitude of em-
bracing non-convexity has led to groundbreaking advances in
significant challenges, such as speech and image recognition,
text generation, and many more [3]. Among ML’s approaches,
deep neural networks (DNNs) have proven to be successful in
many prediction tasks, particularly in predicting decisions [4].
Thus, they are the perfect candidates for approximating the
behavior of agents in a strategic interaction framework such
as a game.

This paper explores and integrates the robustness of game
theoretic frameworks in managing conflicts among agents with
the capacity of ML approaches, such as DNNs, to capture
complex agent behaviors.

II. PRELIMINARIES ON GAME THEORY

Let us consider the standard mathematical setting of non-
cooperative games [5]. Thus, let us consider a set of N
agents N , indexed by i ∈ N := {1, ..., N} ⊆ N each
with decision variables xi ∈ Rni , for some ni ∈ N.
Moreover, let n :=

∑
i∈N ni. We define vector x−i :=

col(x1, . . . ,xi−1,xi+1, . . . ,xN ) ∈ Rn−i , where n−i := n −
ni, which collects the strategies of all agents but i, as well
as vector x := col(x1, . . . ,xi, . . . ,xN ) ∈ Rn, collecting the
strategy of all agents. Each agent i ∈ N tries to minimize
a (possibly non-convex) cost function fi (xi,x−i) : Rn ×
Rn−ni → R by choosing a strategy in a (possibly non-convex)
feasible set xi ∈ Ωi ⊆ Rn. One can thus define the so-
called Nash equilibrium problem (NEP) as the following N
interdependent optimization problem:

∀i ∈ N : minimize
xi∈Ωi

fi(xi,x−i). (1)

A standard requirement, often introduced in related works,
is that for each i ∈ N and for every x−i, the function
fi (·,x−i) is convex and continuously differentiable. This
requirement is necessary for setting up many fixed-point for-
mulations used to demonstrate the existence and convergence
of Nash equilibria [6].

P. Scarabaggio, N. Mignoni, R. Carli, and M. Dotoli are with the De-
partment of Electrical and Information Engineering of the Polytechnic of
Bari, Italy. (e-mail: {paolo.scarabaggio, nicola.mignoni,
raffaele.carli, mariagrazia.dotoli}@poliba.it).

III. LEARNING-BASED NASH GAMES

The applicability of multi-agent models as in (1), is lim-
ited by (i) the possibility of finding suitable functions that
realistically model agents’ preferences and (ii) constraining
their formulation to be convex. Despite the challenging task
of defining a function that realistically approximates agents’
preferences, several applications allow for measuring agents’
behavior in the sense of evaluating their response to a given
environment whose state depends on given parameters and
other agents’ decisions.

Thus, let E := S × Ω abstract an environment whose state
is (uniquely) determined by a certain scenario s ∈ S ⊂ Rm,
and the collective actions taken by the agents x ∈ Ω. From the
perspective of agent i ∈ N , however, only set Ei := Si ×Ω−i

is accessible, represents the information agent i ∈ N acquires
regarding scenario s ∈ S. Moreover, let Ω−i := Ω1 ∩ · · · ∩
Ωi−1 ∩ Ωi+1 ∩ · · · ∩ ΩN constitute the set of all strategies
but the one of player i ∈ N . Formally, we can introduce
an observer which maps (s,x) 7→ col(gi(s), hi(x−i)) for
some hi : Ω−i → Rpi . The latter represents the information
quota that agent i receives regarding other agents strategies.
Therefore, each agent has a possibly limited view of the
environment, albeit a full knowledge of some function of
the other’s decisions. In full-information games, one has
h(x−i) = x−i.

Such a formulation allows us to define the training set and
target vector against which each agent i ∈ N can develop its
response strategy. Equipped with a dataset Ti, we can define a
feed-forward DNN composed of layers l ∈ L := {1, ..., |L|} ⊆
N. The output of each layer xl ∈ R|Pl| can be computed as:

xl = Φl (Wlxl−1 + bl) , ∀l ∈ L (2)

where Wl ∈ R|Pl|×|Pl−1| is the weight matrix, bl ∈ R|Pl| the
bias vector and Φl(·) : R|Pl| → R|Pl| the activation function of
the layer. By setting x0 ∈ R|P0| as the input and x|L| ∈ R|P|L||

as the output of the DNN, we can define the overall input-
output relationship of the network in the following form:

x|L| = Φ(x0) (3)

where Φ(·) = Φ|L| ◦ Φ|L|−1 ◦ · · · ◦ Φ1(·).
Thus we can approximate the behavior of agent i ∈ N as:

∀i ∈ N : xi = projΩi

{
Φi

([
gi(s)

hi(x−i)

])}
. (4)

where xi is the response of agent i ∈ N yielded by the feed-
forward DNN when the actions of other agents are x−i ∈
Rn−ni under scenario s ∈ S.

Remark 1. Once trained, (4) becomes an alternative ap-
proach to evaluating xi = argminxi∈Ωi

fi(xi,x−i), as in (1).
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IV. EXISTENCE AND UNIQUENESS OF EQUILIBRIA

Having redefined agents’ behavior, the standard setting for
Nash equilibria does not hold here. Thus, let us search for
different equilibrium conditions and introduce a notion of
Learning-Based Nash Equilibrium (LBNE).

Definition 1 (Learning-Based Nash Equilibrium). A LBNE is
a strategy profile x∗ ∈ Ω such that, for any s ∈ S:

∀i ∈ N : x∗
i = projΩi

{
Φi

([
gi(s)

hi(x
∗
−i)

])}
. (5)

Next, we argue that an LBNE equilibrium exists under the
following assumptions.

Assumption 1. For each i ∈ N the feed-forward DNN Φi(·),
approximating the agent response, is Lipschitz continuous with
constant γi, while hi : Ω−i → Rpi is 1-Lipschitz continuous.

Proposition 1 (Existence). Every game satisfying Assumption
1, has at least one LBNE.

Proposition 2 (Uniqueness). Every game satisfying Assump-
tion 1 with

(∑
i∈N γ2

i

)1/2
< 1 has only one LBNE.

Requiring the feed-forward DNN Φi(·) to be Lipschitz
continuous with constant γi is equivalent to requiring that
for each layer li ∈ Li, given yl, zl ∈ R|Pl|, there exists
γl ∈ R≥0 such that ∥ (Wlyl−1 + bl) − (Wlzl−1 + bl) ∥ ≤
γl∥yl−1 − zl−1∥, and that given yl, zl ∈ R|Pl| it holds
∥Φl (yl−1)− Φl (zl−1) ∥ ≤ ∥yl−1 − zl−1∥.

V. ILLUSTRATIVE EXAMPLE

As an illustrative example, let us consider an energy com-
munity model comprising smart energy users. Each agent
i ∈ N behaves selfishly, choosing its energy consumption
strategy xi from a convex and compact feasible set Ωi, i.e.,
xi ∈ Ωi. The energy cost in the community follows a
dynamic pricing scheme, where the cost incurred by agent
i ∈ N depends on the strategies of other agents x−i [7].
Specifically, we assume that the energy cost for each consumer
is an aggregation of other agents’ strategies and thus can be
computed as:

hi(x−i) :=
∑

j∈N\{i}

Pi,jxj (6)

where Pi,j indicates the strength of the influence of agent
j ∈ N on agent i ∈ N , with 0 denoting no influence.

To train the DNNs approximating agents’ behavior, we
utilize data from the Low Carbon London project [8]. The
dataset includes energy consumption in kWh per half hour,
unique household identifiers, dates, and times for approxi-
mately 1,100 customers subjected to dynamic energy prices.
For the training process, we select 100 customers from the
dataset. We train a different DNN for each customer using
timestamp information and the corresponding energy price as
input features. The target value for each DNN is the respective
customer’s energy consumption. Thus, each DNN aims to
approximate a customer’s behavior in deciding how much
energy to use in a specific time slot based on the energy price.
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Figure 1. Strategy convergence of agents using Algorithm 1.

We employ DNNs composed of 5 linear layers with 64 neurons
each and fullsort activation functions.

In Fig. 1, we show the convergence of strategies to an LBNE
using the Picard-Banach Distributed Scheme.

VI. CONCLUSION

This paper challenges the conventional reliance on convex-
ity in game theory, recognizing the limitations it imposes when
agents’ utility functions cannot be adequately represented
preserving this assumption. Unlike conventional approaches
that model agents’ behaviors with convex cost functions, we
propose using deep neural networks (DNNs) to compute the
agents’ response actions. Introducing a technical assumption
on parameters of the DNN, we establish the existence and
uniqueness of equilibria.

As a future work, it would be interesting to extend the
proposed framework to games with coupling constraints.
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Sample Efficient Certification of Discrete-Time Barrier Functions

Sampath Kumar Mulagaleti, Andrea Del Prete

Abstract— We present a sample-efficient approach to
certify barrier functions of discrete-time dynamical sys-
tems. Our approach divides the 0-sublevel set of the can-
didate barrier function in multiple segments, and derives
sampling resolution bounds in each segment to verify the
barrier function with a user-specified decay rate.

I. INTRODUCTION

We develop a procedure to verify barrier functions for
discrete-time dynamical systems of the form x+ = f(x)
with measurable state x ∈ Rn. A function h : Rn → R
is a barrier function if there exists some scalar function
α : R → R verifying |α(y)| ∈ (0, |y|) if y ̸= 0 and
α(0) = 0, along with with a set D ⊂ Rn satisfying

h(f(x))− h(x) ≤ −α(h(x)), ∀ x ∈ D. (1)

Then, S(b) := {x : h(x) ≤ b} is an invariant set for any
b ≥ 0 verifying S(b) ⊆ D. The region S(0) is attractive,
and x0 ∈ S(0) implies xt ∈ S(0) for all t ≥ 0. If the
system is subject to constraints x ∈ X , then h is a safe
barrier function if S(0) ⊆ X ∩D.

We present our discussion for the linear function
α(y) := αy defined with some decay rate α ∈ (0, 1).
Barrier functions can be synthesized by solving variants
of the robust feasibility problem

Find h :

{
S(0) ⊆ X,

S(0) ⊆ {x : h(f(x)) ≤ (1− α)h(x)}.

Unfortunately, except in specific settings such as poly-
nomial parameterizations, e.g., [2], solving the syn-
thesis problem exactly is intractable. This necessitates
the adoption of sampling-based approaches for solving
the synthesis problem, followed by a verification step
to develop safety certificates, e.g., [6], [7]. Broadly,
verification approaches can be divided into three cate-
gories: Generalizing from finite samples using Lipschitz
constants, e.g., [5]; analyzing reachability of the candi-
date functions, e.g., [8]; and counter-example synthesis,
e.g., [4]. We focus on the first approach, i.e., based on
verifying the inclusions of the synthesis problem through
sampling, and generalizing the results using Lipschitz
constants. We assume that the inclusion S(0) ⊆ X is
verified, and target the verification of the inclusion

h(x) ≤ (1− α)h(x), ∀ x ∈ S(0). (2)

The authors are with University of Trento, Italy.

The proposed work hinges on the following rationale:
1) Typically, we encounter closed-loop systems of the
form x+ = f̄(x, ν(x)), where ν(·) is a feedback con-
troller that results from an optimization problem, e.g., a
Model Predictive Controller (MPC), such that computing
the control input at a given state requires solving an
optimization problem. Hence, our approach focuses on
sample efficiency while verifying (2).
2) A candidate function h is a barrier function if it
satisfies (1) for any α ∈ (0, 1). Hence, we exploit a
relaxation of this constant in a spirit similar to [1].

II. APPROACH

Suppose we are given a candidate barrier function
h(x) and α ∈ (0, 1). Defining γ0 := minx∈S(0) h(x),
consider a sequence of scalars {γ0, · · · , γq} verifying
γi−1 < γi ≤ 0 with γq = 0. Using these scalars, define
the sets Ci := {x : h(x) ∈ (γi−1, γi]}, and suppose we
sample {xi

j ∈ Ci, j ∈ {1, · · · , Ni}} for all i. Verify

h(f(xi
j))− (1− α)h(xi

j) ≤ −δ, ∀ j ∈ {1, · · · , Ni} (3)

for each i ∈ {1, · · · , q} for some δ ≥ 0.
Problem: Derive conditions on {γ0, · · · , γq} and sam-
ples {xi

j ∈ Ci, j ∈ {1, · · · , Ni}} under which verifica-
tion of (3) implies h is a barrier function.
We tackle this problem using the fact that h is a barrier
function if there exists some ᾱ ∈ (0, 1) such that

r(x) := h(f(x))− h(x) ≤ −ᾱh(x), (4)
∀ x ∈ Ci, i ∈ {1, · · · , q}.

Observe that the scalar ᾱ is not necessarily equal to the
decay constant α used while synthesizing the function
h(x). As we will see, ᾱ > α, since it accounts for
robustness of verification through sampling.

Proposition 1: Consider any arbitrary sequence
{γ0, · · · , γq}, and suppose that the samples verifying (3)
satisfy the epsilon-net condition

∀ x ∈ Ci, ∃ j ∈ {1, · · · , Ni} : ∥x− xi
j∥ ≤ ϵi (5)

for all i ∈ {1, · · · , q}. Then, h(x) is a barrier function
verifying (4) with ᾱ := α/(1−µ) for any µ ∈ (0, 1−α)
if the sampling resolution parameter ϵi verifies

ϵi ≤
δ

Lr + αLh
−

1

Lr + αLh

(
αµ

1− µ

)
γi (6)



for all i ∈ {1, · · · , q}, where Lh and Lr are Lipschitz
constants of the function h(x) and r(x) respectively.

Proposition 1 presents a way to verify if h(x) is
a valid barrier function, where µ is the verification
accuracy parameter. While relaxations of this form have
been used previously to verify stability from data, to the
best of our knowledge, this is the first application to use
them for verifying invariance. By choosing µ close to
zero, we have ᾱ close to 1: this choice can be interpreted
as being interested in verifying invariance of the set
S(0). On the other hand, by choosing µ close to 1−α,
we have ᾱ close to α, such that we would be verifying
contraction property of the barrier function. A procedure
that exploits Proposition 1 is outlined in Algorithm 1.

Algorithm 1 Barrier function verifier

Require: f(x), h(x), α ∈ (0, 1), µ ∈ (0, 1− α), δ ≥ 0
1. Estimate Lipschitz constants Lh and Lf of f and
f , set Lr = LhLf + L− h
2. Select {γ0, · · · , γq}
3. Compute {ϵ1, · · · , ϵq} verifying (6)
4. Sample {xi

j ∈ Ci, j ∈ {1, · · · , Ni}} verifying (5)
if (3) is verified for each i ∈ {1, · · · , q} then

Return Verification success
else

Return Verification fail
end if

For an efficient implementation of Algorithm 1, the
research questions being explored are:
1) Estimating Lh and Lf : Currently, a sampling-based
approach is adopted. Other approaches can potentially
be explored to estimate these constants, e.g., [3].
2) Selecting q and γ such that the number of samples
is minimized: While a linear interpolation between γ0
and q is a viable option, current investigation focuses on
exploiting geometry of the underlying set.
3) Sampling from sets Ci: Constructing ϵ-nets veri-
fying (5) is currently done using rejection sampling.
While this involves the computationally inexpensive
evaluation of h(x), the proportion of number of samples
rejected can be very high. Procedures to identify better
sets to perform rejection sampling can be developed to
improve efficiency. Probabilistic approaches that give
lower-bounds on the number of samples to synthesize ϵ-
nets can be used to provide confidence-based guarantees.

III. PRELIMINARY NUMERICAL RESULTS

For simplicity of presentation, we consider the linear
system x+ =

[
1 0.2

−0.2 0.8

]
x +

[
0
0.2

]
u equipped with the

nonlinear feedback controller u = ν(x), where

ν(x) := argmin
u

ℓ(u;x)) s.t. h(x+) ≤ (1− α)h(x)− δ

where ℓ(u;x) := ∥u − Kx∥22, h(x) is a single-layered
neural network with 8 hidden softmax units. The matrix
K ∈ R1×2 is the LQR feedback gain corresponding
to identity matrices Q and R. We select α = 0.2 and
δ = 0.01. Note that ν(x) is the solution of a nonlinear
optimization problem, and our goal is to verify if h(x) is
a barrier function. To this end, we simulate Algorithm 1
with µ = 0.4, such that ᾱ = 0.33. Using a data-driven
procedure, we identify the Lipschitz constants Lf =
1.668 and Lh = 2.254. Computing γ0 = −2.729, we
then estimate the number of samples Ntot =

∑q
i=1 Ni

required to satisfy (5) for a certified verification:

q 1 2 3 4 5
Ntot(×106) 3.75 2.12 1.48 1.14 0.93

q 6 7 8 9 10
Ntot(×106) 0.79 0.69 0.61 0.56 0.51

Note that q = 1 corresponds to a single set, i.e., C1 =
S(0). As expected, we observe a reduction in the number
of samples required for verification as q increases. A
study of whether there exists some q̂ after which Ntot

increases is a subject of future study.
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Stability of Nonexpansive Monotone Systems and
Application to Recurrent Neural Networks
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Abstract— This abstract presents a novel result for continuous-
time smooth monotone systems: if the system is nonexpansive
w.r.t. a diagonally weighted infinity norm and if there is at least
one equilibrium point, then all trajectories converge to one of
them. Differently from the current literature trend, the system
is not required to be contractive but merely nonexpansive, thus
allowing for multiple equilibrium points. Sufficient conditions
on the vector field are provided to verify nonexpansiveness,
which are then applied in the context of Recurrent Neural
Networks (RNNs), thus identifying a class monotone RNNs whose
trajectories are convergent even though their dynamics is not
contractive.

I. INTRODUCTION

Contraction theory is becoming a popular framework, pro-
viding powerful tools for establishing stability properties of
nonlinear dynamical systems. In general, a (time-invariant)
dynamical system is said to be contractive if every two
trajectories converge to one another, thus resulting in systems
with a unique equilibrium. On the other hand, convergence of
trajectories toward equilibrium points is still possible when the
system is not contractive but only nonexpansive, that is every
two trajectories do not diverge from one another. It is clear that
the class of nonexpansive systems is broader than contractive
systems, naturally allowing for multiple equilibrium points.
While classical approaches mostly focus on contraction with
respect to the Euclidean ℓ2-norm, recent works have shown
that the stability of monotone systems can be studied for
contractive systems [1] and nonexpansive systems [2] with
respect to non-Euclidean norms. Monotone systems are such
that any pair of ordered initial conditions give rise to ordered
trajectories [3]. We have recently shown that smooth monotone
dynamical systems satisfy a stricter notion of monotonicity
called type-K monotonicity [2]. The main contribution of this
abstract is to show how type-K monotonicity can be leveraged
to prove that [4]:

• Trajectories of smooth monotone systems that are nonex-
pansive w.r.t. a diagonally weighted sup-norm converge
toward equilibrium points, if any exist (Proposition 1);

• Smooth monotone systems are nonexpansive if and only
if they are subhomogeneous (Theorem 1);

We also apply our novel results to the convergence analysis of
Recurrent Neural Networks (RNNs), with a focus on Hopfield
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and firing-rate dynamics [2]. In particular, we prove that:
• Monotonicity and subhomogeneity of these neural net-

works ensure convergence of their state trajectories even
if their dynamics are not contractive (Theorem 2).

II. MAIN RESULTS

We consider continuous-time autonomous dynamical sys-
tems ẋ(t) = f(x(t)), with x(t) ∈ X denoting the state of the
system at time t ∈ R and X ⊆ Rn denotes the state space.

Assumption 1: The vector field f : X → Rn is continuously
differentiable and the state space X ⊆ Rn is convex.

Under Assumption 1, the Jacobian of the vector field f is
denoted by Df(x). A dynamical system can be described in
terms of its flow φ(t,x0) denoting the state at time t as

x(t) = φ(t,x0), ∀t ≥ 0, with x(0) = x0.

Definition 1 (Nonexpansiveness and contractivity): Let ||·||
be a norm in Rn. A system on X ⊆ Rn is nonexpansive if for
all x0,y0 ∈ X it holds

||φ(t,x0)− φ(t,y0)|| ≤ ||x0 − y0||, t ≥ 0.

If the inequality holds strictly, the system is contractive.

Definition 2 (Monotonicity): A system on X ⊆ Rn is
“monotone” if for all x0,y0 ∈ X it holds:

x0 ≤ y0 ⇒ φ(t,x0) ≤ φ(t,y0), ∀t ≥ 0.

Definition 3 (Type-K Monotonicity): A system on X ⊆ Rn

is “type-K monotone” if it is monotone and if for all x0,y0 ∈
X and for all i = 1, . . . , n it holds:

x0 ≤ y0 ∧ x0,i < y0,i ⇒ φi(t,x0) < φi(t,y0), ∀t ≥ 0.

We have recently shown in [2] that for continuous-time smooth
dynamical systems, monotonicity and type-K monotonicity are
equivalent properties, and they can be verified by the sign
structure of the Jacobian of the vector field.

Lemma 1: For a system ẋ(t) = f(x(t)) under Assumption 1,
the following statements are equivalent:
(a) The system is monotone;
(b) The system is type-K monotone;
(c) The Jacobian Df(x) is Metzler for all x ∈ X .

A nice feature of type-K monotonicity is that it allows to
prove convergence toward equilibrium points for systems that
admit at least one equilibrium point [4] and are nonexpansive
w.r.t. a weighted sup-norm

||x||∞,[η]−1 = max
i=1,··· ,n

η−1
i |xi|.



Proposition 1: Consider a system ẋ(t) = f(x(t)) under As-
sumption 1 satisfying the following:

• the system is monotone nonexpansive w.r.t. ||·||∞,[η]−1 ;
• the set of equilibrium points F(f) ̸= ∅ is not empty.

Then all equilibrium points are stable and each trajectory
converges asymptotically to one of them.

The proof of this result is hinged on the one-to-one rela-
tion between systems that are nonexpansive w.r.t. ||·||∞,[η]−1

and those that are nonexpansive w.r.t. ||·||∞, which by [5,
Lemma 2.7.2] are “η-subhomogeneous” with η = 1.

Definition 4 (Subhomogeneity): A dynamical system on
X ∈ Rn is “η-subhomogeneous”, where η ∈ Rn

+ is a positive
vector, if for all initial conditions x0 ∈ X it holds:

φ(t,x0 + αη) ≤ φ(t,x0) + αη, forallα ≥ 0, ∀t ≥ 0.

Since under Assumption 1 monotonicity and type-K mono-
tonity are equivalent by Lemma 1, then type-K monotonic-
ity and 1-subhomogeneity ensure stability of equilibrium
points [2, Lemma 4] and convergence of all trajectories to
equilibrium points [2, Theorem 1]. As this proof sketch
may suggest, subhomogeneity is necessary and sufficient for
nonexpansiveness [4].

Theorem 1: Consider a monotone system ẋ(t) = f(x(t))
under Assumption 1. Then, it is η-subhomogeneous if and only
if it is nonexpansive w.r.t. ||·||∞,[η]−1 .

We also provide two equivalent necessary and sufficient con-
ditions for η-subhomogeneity for monotone systems [4].

Lemma 2: For a monotone system ẋ(t) = f(x(t)) under
Assumption 1, the following statements are equivalent:
(a) the system is η-subhomogeneous;
(b) the vector field satisfies f(x+αη)≤f(x), ∀x∈X ,α≥0;
(c) the Jacobian satisfies Df(x)η ≤ 0, ∀x ∈ X .

III. STABILITY OF NONEXPANSIVE MONOTONE RNNS

We consider two models of RNNs [6], the Hopfield and the
firing-rate models, with dynamics

ẋ(t) = fH(x(t)) := −Cx(t) +AΦ(x(t)) + b, (1)

ẋ(t) = fFR(x(t)) := −Cx(t) + Φ(Ax(t) + b), (2)

where C ∈ Rn×n is a positive diagonal matrix, A ∈ Rn×n,
b ∈ Rn is a constant input, and Φ : Rn 7→ Rn is an activation
function satisfying Assumption 2.

Assumption 2: Activation functions are diagonal, i.e.,
Φ(x) = [ϕ1(x1), · · · , ϕn(xn)]

⊤ where each ϕi : R 7→ R is
continuously differentiable and globally Lipschitz, i.e., there
exists finite d1 ≤ d2 such that for all i = 1, . . . , n it holds

d

dx
ϕi(x) ∈ [d1, d2], ∀x ∈ R,

and the Lipschitz constant is given by d = max{|d1|, |d2|}

We have the following result [4].

Theorem 2: Consider Hopfield and firing-rate neural net-
works as in eqs. (1)-(2) with activation function sat-
isfying Assumption 2. Let A⋆ = min{d1A, d2A} and
A⋆ = max{d1A, d2A} satisfy the following conditions:

a) A⋆ is Metzler (monotonicity);
b) ∃η ∈ Rn

+ : (A⋆ − C)η ≤ 0 (η-subhomogeneity).
Then, all their trajectories converge to some equilibrium point,
if any exists.

As an example, consider a Hopfield or a firing-rate RNN
with dynamics ruled by

C = I, A =

[
0 0.5
2 0

]
, ϕ(x) = tanh(x),

where Assumption 2 is satisfied with d1 = 0 and d2 = 1. The
system satisfies all conditions of Theorem 2:

• Assumption 1 is satisfied because the activation function
is the continuously differentiable hyperbolic tangent;

• The system is monotone since the Jacobian
Df(x0) ≥ −C is Metzler for any x0 ∈ Rn according to
Lemma 1, because C is diagonal.

• The system is v1-subhomogeneous according
to Lemma 2, because the Jacobian satisfies
Df(x0)v1 ≤ (A− C)η = Av1 − Cv1 = v1 − v1 = 0

This means that all trajectories converge to some equilibrium
point, even though the system is not contractive (cfr. [6]) but
merely nonexpansive w.r.t. to the ||·||∞,[η]−1 for η = v1 where
v1 = [1, 2]⊤ is the eigenvector of A associated with the
eigenvalue λ1 = 1, according to Theorem 1.

Remark 1: Other examples of nonexpansive RNNs that are
nonexpansive but not contracting can be found for any non-
negative matrix A ≥ 0 and choosing:

1) C = λMAXI , where λMAX is the largest eigenvalue of A.
In this case, the system is nonexpansive w.r.t. ||·||∞,v−1

where v is the eigenvector associated with λMAX;
2) C = diag(A1). In this case, the system is nonexpansive

w.r.t. ||·||∞;
3) C = diag((Aη))[η]−1 for any η ≥ 0. In this case, the

system is nonexpansive w.r.t. ||·||∞,η−1 .
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Stability and constraint satisfaction in Recurrent Neural Network based
Model Predictive Control
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Abstract— This abstract summarises our research on Recur-
rent Neural Network (RNN) based Model Predictive Control
(MPC). First the advantages of the use of RNN models in MPC
are detailed. Then it is reported how the key issues of stability,
constraint satisfaction and offset-free tracking have been solved
in the MPC design, based on different classes of RNN.

I. INTRODUCTION

Model Predictive Control (MPC) relies on accurate models
to predict the dynamics of the system under control. In some
situations obtaining a physical model of a nonlinear plant
can be difficult and expensive, because the system under
control is complex or because there is a lack of knowledge
about the internal laws that govern the system. For this
reason, the use of nonlinear, black-box models in MPC
gained increasing popularity in recent years, thanks to the
availability of large amount of data and to the increase in
the available computing power. In particular, the class of
Recurrent Neural Network (RNN) models is very effective in
learning nonlinear plant dynamics, and only requires input-
output data for the training [1]. In order to guarantee that
the effect of the state initialization vanishes, and that a small
input variation does not lead to a large state variation, it is
useful to consider RNN models that satisfy an Incremental
Input-to-State Stability (δISS) property.

Some key issues in the design of RNN based MPC
are the stability of the closed loop and the robustness
to uncertainties. The effect of uncertainties is particularly
critical when state or output constraints are considered. In
this case, it is necessary to rely on robust MPC techniques
to guarantee robust feasibility and constraint satisfaction
despite the uncertainties [2]. Moreover, it is possible to apply
schemes for offset-free nonlinear MPC [3] to achieve null
tracking error at steady state in presence of model-plant
mismatch and persistent disturbances.

The aim of this abstract is to summarise how all of these
aspects of MPC design have been considered for different
classes of RNN in our papers [4], [5], [6], [7], [8].

II. RECURRENT NEURAL NETWORKS FOR MPC

RNN are particularly suitable to model nonlinear sys-
tems because their mathematical structure is the same of
a discrete-time dynamical system, including one or more
state equations and an output transformation. These equa-
tions depend on matrices of weights that are tuned using

1Irene Schimperna and lalo Magni are with Department of Civil
and Architecture Engineering, University of Pavia, via Ferrata 3,
Pavia, 27100, Italy. (e-mails: irene.schimperna01@universitadipavia.it,
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a learning procedure. Many different classes of RNN have
been proposed in the literature, that differ for the structure
of the state and output equations. The choice of the most
appropriate architecture depends on the application.

In MPC design a typical choice is to consider δISS RNN
models. In fact δISS RNN comes with the knowledge of
an open loop incremental Lyapunov function for the model,
that can be exploited in MPC design. Moreover, the use of
RNN as models for MPC requires the introduction of a state
observer in the control loop. In fact the state of RNN models
has no physical meaning, but it encodes the memory of the
past inputs of the plant. Hence, when the model is used
to provide the predictions for the MPC, it is important to
initialize the state in a meaningful way, that is consistent
with the past history of the plant. Since δISS can be thought
as an open-loop observability property, the use of δISS RNN
facilitates the design of the observer.

In our research we have considered Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) net-
works, that are the classes of RNN with the best prediction
accuracy in many tasks, and the recently proposed Recurrent
Equilibrium Networks (REN) [9]. For the first two classes
of networks, the δISS condition can be satisfied including an
additional penalizing term the training loss. Instead, in REN
models, another promising approach is used to guarantee
δISS, that consist in parametrizing the network in a way
that guarantees the δISS property while performing the
training in an unconstrained way, without the need of adding
regularization terms in the training loss.

III. MPC DESIGN

RNN based MPC consists in a finite horizon optimal con-
trol problem, where the evolution of the states of the system
is predicted with the RNN model and is initialized with
the observer state estimation. The considered stage cost is
quadratic and penalizes the deviation of the RNN states and
inputs with respect to their references, and constraints may
be present in the optimization depending on the considered
control problem. Then, the system input is obtained as the
first element of the optimal input sequence, according to the
receding horizon principle.

In the design of stabilizing MPC with RNN models the
following aspects have been considered.

1) Stability: Stability is one of the key issues when
designing an MPC, and is typically guaranteed with methods
based on long enough prediction horizons or on the design of
the terminal ingredients [2]. For RNN based MPC, we have
chosen to use an approach based on terminal ingredients



because it allows to maintain the prediction horizon short
and computational load lower, but in the literature there are
also successful approaches based on long enough prediction
horizons [10]. Moreover, if the system under control is open
loop incrementally stable and a δISS-Lyapunov function is
known, it is possible to exploit this information for the
design of the stabilizing terminal ingredients for the MPC.
In particular, the terminal cost can be chosen as the δISS-
Lyapunov function, possibly rescaled if needed. Then, a
terminal set is required only in presence of state/output
constraints, and can be obtained as a suitable sublevel set
of the Lyapunov function. If only input constraints are
present, the globality of the δISS property allows to avoid
the introduction of a terminal set, so that the optimization is
feasibile independently on the system initial state.

In the case of REN models, the knowledge of a δISS-
Lyapunov function comes directly from the proof of stability
[7]. Instead, in the case of LSTM [5] and GRU [6], the
δISS-Lyapunov functions are obtained with some elaboration
of the stability conditions, that are not directly based on
Lyapunov functions arguments [11], [12].

2) Output constraints: The presence of output constraints
calls for the use of robust MPC to guarantee recursive
feasibility and constraint satisfaction in presence of all the
uncertainties. In RNN based MPC the sources of uncertainty
are the modelling errors, the possible external disturbances
and the estimation error of the observer. When a proba-
bilistic description of the disturbance is not available, a
common method is to use deterministic worst case bounds
of the uncertainties to derive a tightening for the original
constraints. In order to explicitly take into account the
observer estimation error, the constraint tightening approach
proposed in [13] can be employed. This method is based
on incremental Lyapunov functions of the model and and
of the observer estimation error, that in RNN based MPC
are already available because are used to enforce stability,
and has a simple formulation. This approach has been
successfully applied with GRU models in [6] and with LSTM
models in [5], where also the issue of offset-free tracking has
been considered.

3) Incremental input constraints: Incremental input con-
straints are constraints on the variation of the input variable
between subsequent time steps, i.e. on ∆uk ≜ uk − uk−1,
where u denotes the system input and k the discrete time
variable. Very often the input variation is only penalized
in the cost, but in many applications the satisfaction of
incremental input constraints can be very important to guar-
antee the safety of the system. The most natural way to
manage this kind of constraints is to consider ∆u as the
optimization variable of the MPC, and to introduce a discrete
time integrator to obtain the control variable u. However,
the system enlarged with the integrator is no more δISS.
A possible solution to achieve stability in this case is to
introduce a terminal equality constraint only on the non-
δISS part of the system, i.e. on the state of the discrete
time integrator, and to consider a terminal weight based on
a δISS-Lyapunov function of the original model state.

We have considered the issue of incremental input con-
straints in the case of generic RNN models in [8].

4) Offset-free tracking: When the model used by the MPC
and the dynamics of the real plant do not coincide, a common
issue is that in presence of constant references the closed
loop system shows a non null asymptotic tracking error. One
of the most common solutions to this problem is the use
of offset-free MPC, where the model is augmented with a
properly designed constant disturbance, to be estimated by
the observer together with the states of the model. Then, at
each time step the input and state references for the MPC
are updated on the base of the current values of the output
reference and of the disturbance estimation. This method in
combination with LSTM models have shown its effectiveness
in presence of input constraints in [4] and of input and output
constraints in [5].
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Control for Vehicle Interactions in Highway Setting

Elisa Gaetan1,2, Laura Giarré1 and Paolo Falcone1,3

I. INTRODUCTION

Nowadays, deterministic and stochastic multi-agent sys-
tems find applications in different fields. Within a network
of agents, their states can be influenced by many factors,
like the surrounding peers, some external actions, or the
environment itself, due to the present interactions. Focusing
on traffic context, the interactions among vehicles, including
their degree of cooperation, can either enhance or penalize
the performance of individual vehicles as well as traffic flow,
while also impacting safety positively or negatively. There-
fore, being able to predict drivers’ behavior or their degree
of cooperation, could result in enhancements, particularly in
addressing challenges such as path planning or traffic control.
In this work, we design a Markovian behavioral model for a
human driver. Once it has been established, we incorporate
it into a broader control framework, specifically targeting the
control of lane-change maneuvers.

II. ILLUSTRATIVE EXAMPLE

As illustrative example, we propose to consider a two-lane
highway scenario with two vehicles (Fig. 1). In this setup,
the yellow vehicle AC is a control vehicle that acts as an
actuator and has to influence velocity and/or lane position of
the blue vehicle AM . The idea is to utilize AC as a form of a
safety car, an agent capable of influencing the movements of
AM . Realistically, AC cannot foresee the moves of AM in
advance, but it can predict the most likely decisions of AM ,
according to a decision-making model based on everyday
experience (i.e., past observations), and act to modify them
according to a desired behavior. The actual controller is
locally implemented on AC .

Fig. 1: Two-lane highway scenario.

1E. Gaetan, L. Giarré and P. Falcone are with the Engineer-
ing Department ’Enzo Ferrari’, University of Modena and Reg-
gio Emilia, Modena, Italy. {elisa.gaetan, laura.giarre,
paolo.falcone}@unimore.it

2E. Gaetan is also with the Italian National PH.D. DAUSY, Politecnico
di Bari, Bari, Italy. e.gaetan@phd.poliba.it

3P. Falcone is also with the Department of Electrical Engi-
neering, Chalmers University of Technology, Gothenburg, Sweden.
paolo.falcone@chalmers.se

III. VEHICLE’S MOTION MODEL

Inspired by [1], and under the assumption that the coor-
dinate y is the lane number (y = 1 for the rightmost lane,
y = Nlanes for the leftmost one), the motion model for the
vehicle along the highway is

xk+1 = xk + vk∆k, (1a)
yk+1 = yk + ψk, (1b)
vk+1 = vk + ak∆k. (1c)

Thus, xk = [xk, yk, vk] is the state of the vehicle, and uk =
[ak, ψk] is the acceleration and lane-change input.

IV. DECISION-MAKING MODEL OF THE MARKOVIAN
VEHICLE

We model the decision-making process of the driver as a
Markov Chain, whose states belong to the set S = A × L,
where A and L are the discrete sets of acceleration and
lane-change commands respectively, which correspond to the
input uk of the kinematic model (1).
As the decision-making process is a Discrete-Time Markov
Chain, it evolves the equation Πk+1 = QT

kΠk, where
Πk is the state probability vector and Qk the transi-
tion matrix, composed by the conditional probabilities
Pr(ak+1, ψk+1|ak, ψk).

V. CONTROL ARCHITECTURE

As stated previously, the control vehicle AC does not know
the decisions of AM in advance. However, AC could pre-
dict AM ’s decisions by exploiting the Markovian behavioral
model and derive the best control action. Fig. 2 shows the
control logics, where the blocks Kinematic motion model of
control vehicle and Kinematic motion model of Markovian
vehicle implement the model (1) for both AC and AM

respectively. The block Markovian behavioral and decision-
making model describes the decision-making process of AM ,
which outputs the input uM to the model (1). Finally,
the Scenario-tree MPC derives the best control action uC

for AC , based on the current position of AM and the control
objectives.

A. Scenario-tree model predictive control algorithm

The controller design in our approach is inspired by
the principles underlying Stochastic Model Predictive Con-
trol [2], [3], [4]. However, in our scenario, we assume that
the decisions of AM are determined by the evolution of a
Markov Chain, yielding a probability vector Π. A decision
block then selects an input uM corresponding to the Marko-
vian state in S with the highest probability. Hence, we can



Fig. 2: Control logics.

adopt a scenario tree approach to account for the evolution
of the probability vector along the control horizon as in [5].
Algorithm 1 shows the pseudo-code of our scenario-tree

Algorithm 1 Scenario-tree optimizer

1: T ← Simulation length
2: Nc ← Prediction horizon
3: xref ← Reference
4: for k = 1, . . . , T do
5: for iterations i = 1, . . . , Nc do
6: UC

i ← Compute all the feasible uC for AC

7: for uC
j ∈ UC

i do
8: xC

j ← State of AC , applying uC
j in (1)

9: Derive the corresponding Qj and Πj .
10: ûM

j ← argmaxs∈S Πj

11: x̂M
j ← State of AM , applying ûM

j in (1)
12: costij ← costi−1

j +J(xref , x̂M
j )

13: end for
14: end for
15: Find the control input sequence that leads to the

minimum cost and apply the first control action uC .
16: end for

optimizer. The employed cost function is J(xref , x̂M ) =
(x̂M − xref )TQerr(x̂

M − xref ), where Qerr is a diagonal
matrix, and the elements on the principal diagonal are the
weights for errors in x position, lane, and velocity respec-
tively.

VI. RESULTS

Here, we present (some of) the results obtained from
numerical simulations when our control scheme is used in the
traffic scenario in Fig. 1. Our objective is to control the lane
position of AM and guide it to achieve the maximum allowed
velocity, which we set as vmax = 130 km/h ≈ 36m/s. As
desired performance, we set yref = 1 until k = 32 s, and
subsequently yref = 2, with vref = vmax.
To appreciate the effects of the proposed controller on the
decision-making process of AM , snapshots from a simulation
are reported in Fig. 3, where the positions of AC and AM

at the time instants k = {32, 33, 34}s, are shown along
with the corresponding Markovian probability vectors. The
state probabilities are visualized using a color map, ranging
from blue to yellow for smaller to higher probabilities. In
the color map, the x-axis represents the values in the set
of accelerations A in increasing order (with a4 = 0m/s2),
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Fig. 3: Snapshots from a single simulation.

while the y-axis represents different values of lane-moves
(ψ1 = −1, ψ2 = 0, ψ3 = +1).
The snapshot at k = 32 s illustrates the scenario when the
lane reference has been changed from lane 1 to lane 2. At this
time, AM is still driving in the first lane, and its probability
vector indicates that, without any change in the scenario, it
would continue on the same lane with the same velocity.
This is evident as the higher probability is associated with
the state (a = 0m/s2, ψ = 0). Hence, to encourage AM

to change lanes, AC moves to the first lane, as shown in
the snapshot at k = 33 s. Consequently, this modifies the
transition matrix Q of AM , and thus the probability vector.
Indeed, now the most likely decision for the next instant
is s = (a = 0m/s2, ψ = +1). Finally, in k = 34 s, AM is
indeed in the second lane, while AC maintains itself in the
first lane. Moreover, by observing the associated color map,
we note that this scenario is not going to change, as the next
most likely decision is again (a = 0m/s2, ψ = 0).

VII. CONCLUSION AND FUTURE WORK

In this work, we have investigated the interactions be-
tween vehicles in the specific environment of highways and
formulated a mathematical framework for describing how
drivers’ decisions can change according to the moves of
the surrounding vehicles, exploiting this formulation in a
control architecture. Future works will focus on extending
the framework to a scenario with multiple vehicles and/or
more than two lanes. Moreover, validating our model through
traffic simulators and real datasets is undergoing.
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Stop-and-Go Traffic Wave Attenuation: A Shared Control Approach

Erica Salvato1, Lorenzo Elia1, Gianfranco Fenu1, and Thomas Parisini1,2,3

Abstract— We present a novel approach to address the
challenge of stop-and-go wave mitigation in congested vehicular
traffic scenarios. The proposed solution involves equipping
human-driven vehicles with a controller that can effectively
assist the driver by merging human input with the under-
lying automation input through arbitration. Specifically, our
approach integrates a convex combination of human and
automation inputs within the controller through a continuous
and derivable sharing function. This integration allows for the
fusion of human decision-making capabilities with automation’s
perception of the environment. We provide extensive micro-
scopic simulation results to demonstrate the effectiveness of the
proposed approach. In addition, some theoretical guarantees
are established for both the stability of individual vehicles and
the string stability.

In vehicular traffic management, stop-and-go waves pose
significant safety and efficiency challenges, especially with
human drivers involved [1]. While autonomous vehicles
can adhere to predefined guarantees, human-driven vehicles
lack such predictability, leading to instability conditions
influenced by individual driver choices. This unpredictability
underscores the need for innovative approaches to mitigate
the negative impact of stop-and-go waves. One promising
solution involves integrating human-driven vehicles with
advanced driver assistance systems (ADAS) [2], allowing
automation to offer continuous support to drivers at the
control level and adaptive authority throughout the driving
experience. Current vehicles equipped with ADAS utilize
various warning signals and control activities, such as park
assist, lane departure warning systems, and longitudinal and
lateral control interchange [3].

In this paper, inspired by findings from [4], we propose
equipping human-driven vehicles with an ADAS featuring
a newly designed shared control strategy to deal with the
traffic waves problem. This strategy combines feedback
control with human driver input through arbitration, facilitat-
ing seamless integration of both elements. Unlike previous
approaches employing a hysteresis switch-sharing function,
we introduce a novel sharing function characterized by a
raised-cosine (RC) profile [5], which is bounded and smooth.
By integrating human decision-making with automation’s en-
vironmental awareness, we aim to enhance platoon stability,
thereby reducing fluctuations in vehicle movements.

We consider a single-lane platoon of M , M > 1, homo-
geneous vehicles of length li, navigating on a circular road
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Fig. 1: Considered framework in SUMO.

of length L. Each vehicle indexed as i follows the vehicle
indexed as i− 1 ∀i ∈ {1, . . . ,M}, forming the platoon with
vehicle 1 leading and vehicle M trailing. The result is a car-
following (CF) model. We denote by x

(k)
i , v(k)i , and a

(k)
i the

position, the velocity and the acceleration of the i-th vehicle
at the k-th time instant, respectively. Given an initial position
x
(0)
i and an initial speed v

(0)
i , the i-th vehicle dynamics,

subject to a sequence of accelerations a
(0)
i , a

(1)
i , . . . at fixed

time interval Ts, is completely defined as follows:

x
(k+1)
i = x

(k)
i + Tsv

(k)
i

v
(k+1)
i = v

(k)
i + Tsa

(k)
i .

(1)

Each vehicle is assumed forward motion only, no backward
or turning manoeuvres are allowed. The maximum forward
speed for each i-th vehicle is denoted by vM

i and is assumed
to be known and constant ∀i ∈ {1, . . . ,M}. In addition, its
minimum acceleration, denoted by am

i < 0, and its maximum
acceleration, denoted by aM

i > 0, are both given and constant
∀i ∈ {1, . . . ,M}. We assume to work in a scenario with
human-driven vehicles only, and we describe the influence
of the i − 1-vehicle on the i-th vehicle according to the
Intelligent Driver Model (IDM) presented in [6]:

a
(k)
hi

= aM
i

1−
(
v
(k)
i

v̄i

)δ

−


s̄i + t̄i,hv

(k)
i − v

(k)
i ∆v

(k)
i

2
√

aM
i |am

i |

s
(k)
i


2
 , (2)

where v̄i is the desired speed in free-flow traffic conditions,
t̄i,h is the minimum steady-state time gap, s̄i is the clearance
from the i− 1-th vehicle in stand-still situations, and δ is a
parameter usually set to 4. We denote by eh = (seh , 0, veh)
the equilibrium state, i.e., the state for which (2) equals 0.
We assume a congested traffic scenario, i.e., 0 < veh << v̄i.

According to [7], we choose to model the feedback
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Fig. 2: Simulation with three different penetration percentages of vehicles equipped with shared control in a scenario with
β = 0.25. The IDM behaviour in gray, while in red the behaviour of vehicles equipped with our sharing control strategy

controller as a second-order transfer function described by:

afi = kp

(
s
(k)
i + li − t̄i,fv

(k)
i

)
+ kd

(
∆v

(k)
i

)
(3)

where kp ∈ R and kd ∈ R are two control gains, while t̄i,f
is the desired steady-state time gap.

Inspired by the findings of [4] we define the shared-control
input of the i-th vehicle asi as a combination of the feedback
control input afi and the human driver input ahi

:

a(k)si =
(
1− σi

(
t
(k)
i

))
a
(k)
fi

+ σi

(
t
(k)
i

)
a
(k)
hi

, (4)

where σi : R+ → [0, 1] ⊂ R, referred to as the sharing
function, is used to quantify the proportion in which control
authority is distributed between the driver and the feedback
controller.

Differently from [4], where a hysteresis sharing function
has been proposed, here we introduce a σi defined as follows:

σi

(
t
(k)
i

)
=


0 if t(k)i < tif2h

(1− βi)

1 if t(k)i > tif2h
(1 + βi)

1−cos(α)
2 otherwise

(5)

where tif2h
defines the time gap corresponding to a 50%

driver and feedback controller authority, βi determines the

slope of σi, and α =
π
(
t
(k)
i − tif2h

)
2βitif2h

+
π

2
.

Given the above-described scenario, our control objective
is to find a feedback control input afi and a sharing function
σi that, properly combined with the human driver input ahi

(2), effectively mitigate the stop-and-go wave, i.e. the overall
stability is guaranteed.

We perform simulations using the proposed framework
implemented on the Simulator of Urban MObility (SUMO)
[8] as depicted in Figure 1. For our simulation scenario, we
considered a single-lane circular road with a circumference
of L = 898.24m accommodating M = 80 vehicles, each
having a length of l = 5m. Each simulation starts with
vehicles evenly distributed along the ring, with an initial
speed of 0m s−1.

We first perform a simulation with only human-driven
vehicles. The results, as depicted in Figure 3, indicate an
unstable scenario, according to the string instability condition

Fig. 3: Simulation with only IDM

highlighted in [9]. Figure 2 reports simulation results with
increasing penetration percentage of vehicles equipped with
shared control, relative to the total number of vehicles in
the simulation, when β value allows to meet the conditions
related to both local and string stability (that for space
reasons we do not report).
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[2] M. Marcano, S. Dı́az, J. Pérez, and E. Irigoyen, “A review of shared
control for automated vehicles: Theory and applications,” IEEE Trans-
actions on Human-Machine Systems, vol. 50, no. 6, pp. 475–491, 2020.

[3] J. Nidamanuri, C. Nibhanupudi, R. Assfalg, and H. Venkataraman, “A
progressive review: Emerging technologies for adas driven solutions,”
IEEE Transactions on Intelligent Vehicles, vol. 7, no. 2, pp. 326–341,
2021.

[4] J. Jiang, A. Astolfi, and T. Parisini, “Robust traffic wave damping via
shared control,” Transportation Research Part C: Emerging Technolo-
gies, vol. 128, p. 103110, 2021.

[5] J. G. Proakis and M. Salehi, Digital communications. McGraw-hill,
2008.

[6] M. Treiber, A. Hennecke, and D. Helbing, “Congested traffic states in
empirical observations and microscopic simulations,” Physical review
E, vol. 62, no. 2, p. 1805, 2000.

[7] V. Milanés and S. E. Shladover, “Modeling cooperative and autonomous
adaptive cruise control dynamic responses using experimental data,”
Transportation Research Part C: Emerging Technologies, vol. 48, pp.
285–300, 2014.

[8] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “SUMO –
Simulation of Urban MObility,” 2011.

[9] Z. Zhou, L. Li, X. Qu, and B. Ran, “A self-adaptive idm car-following
strategy considering asymptotic stability and damping characteristics,”
Physica A: Statistical Mechanics and its Applications, vol. 637, p.
129539, 2024.



Identification of Cyclists’ Route Choice Criteria

S. Ardizzoni1, M.Laurini1, R. Praxedes1, L.Consolini1, M.Locatelli1

1Dipartimento di Ingegneria e Architettura, Università degli Studi di Parma
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Abstract

The transition to more sustainable and green forms of transportation is increasingly
becoming a priority in developed countries. In particular, bicycles, electric bicycles, and
electric scooters are a convenient mode of transportation for short range and urban travels.
Understanding how users (or simply cyclists, in what follows) choose their routes depending
on various road characteristics is fundamental if one aims at increasing the number of cyclists
(and, hence, decreasing the number of motor vehicles users) or improving the existing cycling
infrastructure, helping decision makers take more informed actions when assigning budget
for infrastructural interventions (see, e.g., [5]).

A quantitative method for assessing the quality of roads from a cyclist’s point of view is
given by the concept of Bicycle Level of Service (BLOS), which has first been introduced in
the late ’80s – early ’90s in [2, 3]. Its aim is to measure quantitatively several qualitative as-
pects of road segments with respect to cyclists’ perception. As we know from several studies
(see, for instance, [1, 6]), cyclists may not use distance as the only objective function when
choosing which route to follow. For instance, the presence of bike facilities may heavily in-
fluence the route choice (see, e.g., [4]), resulting in longer paths in which the amount of road
sections with bike facilities seems to be maximized. However, this is just one example of how
the features of a road portion may influence the cyclists’ choice. In its original formulation,
despite its innovative aspect, the BLOS was affected by some shortcomings like the lack of
statistical calibration and a subjective methodology in assigning road features values. One
of the most critical aspects in BLOS is that of determining the weighting factors multiplying
the quantities associated to the various considered aspects of a road section. Obtaining a
“good” set of coefficients can require data collection, surveying users, normalization and ho-
mogenization of different measurement scales, and it also requires validation and continuous
calibration of the obtained formula.

The main contribution of this work is an optimization approach to detect the BLOS for
various user groups, leveraging knowledge of the true paths followed by them, accessible, for
example, through data collected by bike-sharing services. This BLOS identification can be
particularly useful when addressing the problem of bike network optimization, in which one
wishes to maximize the benefit of infrastructural interventions given a limited budget.

In our work we assume that r basic objective functions (i.e., road features) are given
and that users consider a combination of such functions in order to determine the path to
be followed. This is equivalent to defining a BLOS formula in which only r factors are
involved. The road network is represented by a graph and each basic objective function
is defined assigning costs to all arcs of this graph. We consider a BLOS formula which
is a convex combination of the considered features, hence the coefficients of the BLOS
formulas, also called weights in what follows, are all assumed to be in [0, 1] and their sum
is equal to one. We assume that each user has their own r-dimensional weight vector, and
follows a shortest path (SP) over the graph representing the road network, where the costs

1



of the arcs are a convex combination of the r basic costs, with coefficients of the convex
combination corresponding to the entries of the weight vector. We also assume that users
may have different behaviors and, thus, select their paths according to different weight
vectors. Therefore, our goal is that of identifying both the set of weighting factors that
users perceive, and the probability with which users would consider such weights. In other
words, we assume that there is not a unique BLOS formula that suits all users but we aim
at identifying different BLOS formulas for different users segments.

In our work, we formalize the general problem and we first consider a simplified version
where the set of possible weights is assumed to be known in advance. For this problem, we
propose a bilevel optimization formulation, and derive a polynomial-time algorithm for its
solution. Next, we present the optimization problem with unknown set of weights, and we
discuss some properties of the function to be minimized. Moreover, we discuss how the data
needed for the problem definition can be collected, also pointing out possible difficulties and
limitations of the proposed approach. Identification can be based on two different types of
data:

1. on observations of traffic flow on (a subset of) network edges;

2. on the routes traveled by a certain sample of users.

Based on the type of data available, we define a different objective function for the optimiza-
tion problem. For both the cases, we propose a solution algorithm for that problem. Finally,
we present some experiments on the bicycle network of the city of Parma, based on the data
provided by Dott. This company operates approximately 300 free-floating e-bikes in the
city of Parma and provided us with 2000 trips taken by their users. Using the optimization
method presented in this work, we investigated and attempted to classify the primary route
choice criteria, defined as a linear combination of the three road features: distance, road
security and practicability. Road security for bicycles refers to the measures and conditions
that ensure the safety and protection of cyclists while using roadways. It involves several key
aspects such as protection from vehicular traffic, speed limit for cars, presence of signage,
markings and bike box. The practicability of a road refers to how suitable and functional
it is for use by cyclists under various conditions. This encompasses several factors, such as
the width of the road, the pavement material and maintenance, the presence of bottlenecks
and protrusion.
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Abstract— Urban autonomous driving has the potential to
enhance both safety and efficiency of transportation in environ-
ments also in complex traffic conditions. However, new services
and approaches are necessary to manage Autonomous Vehicles
in the real traffic. This paper introduces a novel approach to
optimize routing in the urban settings by Deep Reinforcement
Learning (DRL) techniques. A modular DRL architecture is
proposed to obtain a route able to minimize the length of the
paths, minimize the number of turns during the travel and
select the dedicated lanes.

I. INTRODUCTION

With the evolution of the urban autonomous driving, the
choice of personalized and optimal routes is emerging as
a crucial element in the context of roadway planning. The
customization of routes is based on the dynamic adaptation
of pathways in response to urban context variables, such
as traffic and user preferences. Optimizing routes and travel
times is a way to reduce congestion, decrease gas emissions
and contribute to global efforts to mitigate climate change.

In the recent years, the research and innovation areas
focus on Cooperative, Connected and Automated Mobility
topics and services for managing and controlling autonomous
driving systems.

For instance, some novel contributions enlighten that the
most modern technologies based on Information and com-
munications technologies, such as Connected and Coopera-
tive Services, Artificial Intelligence and Big Data allow to
connect users, vehicles and infrastructures in an intelligent,
efficient, safe and sustainable manner [1], [2].

Indeed, DRL is a promising solution especially in the
domains of driving policy, predictive perception, path and
motion planning, and low level controller design. Open issues
include: validating the performance of RL based systems, the
simulation-reality gap, sample efficiency, designing good re-
ward functions and incorporating safety into decision making
RL systems for autonomous agents.

This paper aims to address these gaps and considers the
basic problem of designing suitable routes in the cities for
Autonomous Vehicles (AVs) by focusing on multi objectives
such as the length of the routes, the requirements of minimiz-
ing the turns during the travel and the selection of dedicated
lanes. The problem is solved by applying a novel modular

F. Paparella, G. Olivieri, G. Volpe, A. M. Mangini and M. P. Fanti are
with the Department of Electrical and Information Engineering,Polytechnic
University of Bari, 70125 Bari, Italy (f.paparella7@phd.poliba.it;
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DRL model based on the training of agents associated with
the AVs.

Since considering all the possible routes of the cities
for completing the training is a very time consuming and
complex task, we address such issue by proposing a modular
DRL architecture based on the division of the city in a set of
zones. A set of agents is trained and each agent is associated
to routes starting from a zone and ending to a different one.
The AV will select the route that exhibits the best multi-
objective strategy enlightened by the best value of the reward.
The modular approach allows us to train the agents in parallel
and in limited urban areas.

The proposed modular DRL based strategy is applied to
the city center of Bari, a town of Southern Italy and the
agents are trained in a simulation environment. Some results
show the advantages of the proposed methodology.

This paper has been accepted for presentation and publica-
tion at the 2024 IEEE International Conference on Systems,
Man, and Cybernetics conference, Kuching, Malaysia. Octo-
ber 6-10th 2024.

II. PROBLEM FORMULATION

Let us consider an AV that has to travel in the city: the
problem is to find the optimal path p starting from a generic
point of the city to a final point with the aim of minimizing
the length of the route, minimizing the number of right and
left turns and using the lanes dedicated to the AVs.

The road network is modeled as a graph G(J,E) where
the set of nodes J = {j|j = 1, ..., n} is the set of junctions
or intersections and the set of edges E = {e1, e2, ...em}
denotes the set of the city streets. In particular, it holds that
an edge ei = (j, r) ∈ E if there exists a street starting
from j ∈ J and ending to r ∈ J . Moreover, we consider
a set of edges Ep ⊂ E that are priority edges, i.e., they
correspond to streets dedicated to the AVs. We consider the
problem of determining the route that connects a pair of
edges c = (es, ef ) where es is the starting edge and ef is
the ending edge. A possible route connecting the pair c =
(es, ef ) is a path p represented by a sequence of edges p =
(es, ....ej , .., ef ). The problem to be solved for a given pair
c = (es, ef ), is determining the optimum path exhibiting
the minimum path length, the minimum number of right/left
turns crossed and the maximum number of priority traveled
routes.

III. THE MODULAR DRL ARCHITECTURE APPROACH

In the proposed system an RL agent is associated with
the AV that chooses the best action to obtain the minimum



distance, with the minimum number of right/left turns and
the maximum number of priority edges.

A. State Space and Action Space

The state of the agent at time s(t) ∈ S at time t is the
following:

s(t) = [x(t), ϕv(t), e(t)]

where x(t) = (Lat(t), Lon(t)) denotes the latitude Lat(t)
and the longitude Lon(t) of the position of the AV at time
t respectively, ϕv(t) represents the heading angle of the AV
and e(t) ∈ E is the edge occupied by the AV at time t.

When an AV arrives to a node j ∈ J at time t, it can
change the edge and can decide among three possible actions:
A = {Gostraight, Turnright, Turnleft}.

B. Multi-objective Reward function

We define a Multi-objective Reward function made by a
reward for shortest path, by left and right turns and finally a
reward to use a priority path for the AV.

1) Shortest path: To describe a reward that show how
the agent moves towards the destination edge, we define the
distance d(t) between the current edge at time t, and the
destination edge ef . In case of the current distance d(t) is
less than the distance d(t−1) at time t−1, then it means that
the AV moves towards destination, instead if d(t) is higher
that the distance d(t − 1), then the agent moves far. The
reward function is defined as follows:

rshortest(t) =

{
1 if d(t) ≤ d(t− 1)

−0.5 otherwise.
(1)

2) Avoiding left/right turns: If the modulus of the differ-
ence between the angle at time t ϕ(t) and the angle ϕ(t+1)
at time t+ 1 is greater than a fixed angle ϕfixed

rTlTr(t) =

{
−1 if |ϕ(t)− ϕ(t− 1)| ≥ ϕfixed

0 otherwise.
(2)

3) Priority lanes: For considering the priority lanes, it is
enough to define a positive reward if at the step t, the current
edge e(t) ∈ Ep:

rpriority(t) =

{
1 if e(t) ∈ Ep

0 otherwise.
(3)

4) Multi-objective reward: A multi-objective reward func-
tion rtot at each time t is formulated as follows:

rtot(t) = αrshortest + βrTlTr(t) + γrpriority(t) (4)

where α, β and γ are the weights assigned to each reward
component.

C. The Modular DRL Architecture

In this paper, we propose a modular architecture approach
in which the set E is partitioned in N subsets such that
E = E1∪E2∪ ...EN and Ei∩Ej = ∅ ∀i, j = 1, 2, . . . , N
and i ̸= j. Then, we train N agents in a parallel fashion, each
with a randomly selected pair ci = (es, ef ), where es ∈ Ei

and ef ∈ Ej ∀i, j = 1, . . . , N .
The advantage of the proposed modular strategy is that the

main problem is split in N smaller sub-problems that cover
all different zones of the map and can be trained in parallel.

IV. SIMULATION ENVIRONMENT AND TRAINING SETUP

We consider a map of the city centre of Bari extracted from
OpenStreetMap. The modular DRL training is implemented
in Python language using the RLLib libraries with SUMO
simulator and TraCi interface. The results of the training for
both modular and exhaustive strategies are depicted in Fig.
1.

(a) Agent 1 (b) Agent 2

(c) Agent 3 (d) Exhaustive

Fig. 1: DRL episode mean reward with modular strategy.

Since the mean reward obtained by the four agents is
greater than the one obtained by the exhaustive approach,
it is evident that the modular DRL strategy is better in terms
of performance.

V. CONCLUSION

The approach used in this paper highlights the effective-
ness of the modular Deep Reinforcement Learning (DRL)
approach in urban routing optimization. By integrating mod-
ular DRL algorithms, we are able to dynamically adapt to
changing urban traffic conditions and user preferences.

The future research will integrate the proposed modular
DRL approach with other technologies such as vehicle-to-
everything (V2X) communication in order to enable more
efficient and safer coordination of urban traffic.
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Route Optimization in Precision Agriculture Settings:

a Multi-Steiner TSP Formulation
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Abstract— In this abstract, we propose a route planning strat-
egy for heterogeneous mobile robots in Precision Agriculture
(PA) settings. Given a set of agricultural tasks to be performed
at specific locations, we formulate a multi-Steiner Traveling
Salesman Problem (TSP) to define the optimal assignment of
these tasks to the robots as well as the respective optimal
paths to be followed. Costs for travelling from one location
to another, for maneuvering and for executing the task as
well as limited energy capacity of the robots are considered.
In addition, we propose a sub-optimal formulation to mitigate
the computational complexity. The approach is validated in
a simulated orchard with three heterogeneous aerial vehicles
performing inspection tasks.

I. INTRODUCTION

Continuous plant-by-plant monitoring and targeted inter-

ventions are key features of the Precision Agriculture (PA)

paradigm, that potentially enable increased crop productivity

while reducing waste. Deploying multiple, and possibly het-

erogeneous, mobile robots in the field, which autonomously

navigate among plants and carry out agricultural tasks,

provides an effective solution to realizing the PA paradigm,

as depicted in Figure 1. However, realistically, in large-scale

PA settings, agricultural tasks may be required in locations

that are sparse with respect to the size of the field and low

in number compared to the total number of plants. Hence, a

fundamental question to be addressed is to define which robot

should treat which plants and choose the respective path

according to appropriate optimality metrics. In this regard,

the following existing formulations address similar problems.

The simple Traveling Salesman Problem (TSP) [1] requires

a single robot to visit all the possible locations, the Steiner

TSP [2] requires a single robot to visit a subset of locations,

the multi TSP [3] requires multiple robots to visit all possible

locations, while the vehicle routing [4] requires multiple

robots with limited capacity to visit all the locations.

Contribution: Differently from the papers in the litera-

ture, we propose a multi-Steiner TSP extending the Steiner

TSP to i) multiple heterogeneous mobile robots and ii)

allowing to visit only a subset of all possible locations within

the field, as typical for PA settings. In doing so, we also take

into account energy capacity constraints and turning costs for

which we introduce a novel field modeling. Note that maneu-

vering or turning operations are typically costly in terms of

both time and energy, requiring, for example, high torques to

the motors to be executed. Finally, we provide a sub-optimal

formulation mitigating the computational burden.

1Roma Tre University, Italy
Corresponding author: M. Lippi, martina.lippi@uniroma3.it

Fig. 1: Example of operating scenario.

II. SYSTEM MODELING

Field modeling: We model the orchard field as a directed

graph G = (V, E), referred to as field graph, where each

node vi in V is associated with a location, with position

pi ∈ R
3, where an agricultural task can be carried out and

each edge (vi, vj) ∈ E is associated with a possible passage

from location vi to vj . A depot location, associated with

the vertex v0 ∈ V , is present in the field and all the robots

have to depart from and return to it. Moreover, the subset

Vs ⊆ V \ {v0} of vertices denotes the locations to serve,

i.e., where agricultural tasks must be carried out. Note that

large-scale orchards are generally characterized by a high

number of nodes, i.e., |V| ≫ 1, where only a few of them

must be processed with agricultural tasks, i.e., it generally

holds |Vs| ≪ |V|. Additionally, we introduce the set Ec
of all the pairs of consecutive edges, i.e., collecting pairs

(ep, eq), such that there exist ep = (vt, vv) and eq = (vv, vh),
with {vt, vv, vh} ∈ V . Given a pair of consecutive edges,

we denote as ϕp,q the angle between the respective vectors

up = pt − pv and uq = ph − pv .

Given the field graph, we build an additional graph

Ḡ = (V̄ , Ē), called orientation graph which models the re-

lations between couples of edges in E . These relations are

needed to handle turning costs with generic field topologies.

In detail, each vertex v̄k ∈ V̄ is associated with an edge ek
of the field graph, i.e, v̄k = ek = (vt, vi) ∀ek ∈ E , and

each edge ēk ∈ Ē is associated with consecutive edges of

the field graph, i.e., ēk = (v̄p, v̄q) exists if (ep, eq) ∈ Ec. An

edge ēk = (v̄p, v̄q) is labeled with a tuple (l̄k, ϕp,q), where

l̄k = lp + lq is the overall length of the edges ep and eq and

ϕp,q is the angle between the edges. Moreover, we introduce

the set ξ̄+i collecting the edges in Ē which eventually flow

into node vi ∈ V of the field graph, and ξ̄−i collecting the

edges in Ē which originate from node vi ∈ V .

Robots modeling: A set R = {r1, ..., rm} of m robots is

available to perform agricultural tasks. Each robot rj has a

limited energy capacity denoted by Kj and is characterized

by the following temporal costs: i) cej ∈ R, representing



the unit temporal cost for traversing an edge, ii) ctj ∈ R,

representing the unit temporal cost for turning, and iii)

csi,j ∈ R, ∀vi ∈ Vs, representing the temporal service cost

for performing an agricultural task on node vi. Similarly, we

introduce the respective unit energy costs εej , εtj , εsj for each

robot rj , representing the consumed energy in the time unit.

III. MULTI-STEINER TSP

Problem Statement: We introduce the following binary

decision variables: xk,j ∈ {0, 1}, ∀ēk ∈ Ē , rj ∈ R, encoding

the route assigned to robot rj , which is 1 if robot rj has to

traverse the edge ēk of the orientation graph, 0 otherwise,

and si,j ∈ {0, 1}, ∀vi ∈ Vs, rj ∈ R, encoding the nodes

to serve by robot rj along the assigned route, which is 1 if

robot rj serves the vertex vi belonging to Vs, i.e., perform an

agricultural task on node vi ∈ Vs, 0 otherwise. Note that the

condition xk,j = 1, with ēk = (v̄p, v̄q) implies that robot rj
has to traverse both edges ep ∈ E and eq ∈ E of the field

graph. We aim to optimally determine for each robot rj i)

which agricultural tasks it has to perform, i.e., si,j , ∀vi ∈ Vs,

and ii) its route, i.e., xk,j , ∀ēk ∈ Ē , while complying with

energy capacity constraints. The optimality is intended to

minimize both the maximum and the cumulative temporal

cost by all the robots, comprising costs to traverse the edges,

turn and perform agricultural tasks.

Problem Formulation: Let us introduce the following

aggregate temporal costs for each robot rj :

Ce
j (xj) =

∑

ēk∈Ē

cej · l̄k · xk,j , Cs
j (sj) =

∑

vi∈Vs

csi,j · si,j ,

Ct
j(xj) =

∑

ēk=(v̄p,v̄q)∈Ē

ctj · ϕp,q · xk,j

where Ce
j and Ct

j are the overall temporal costs of robot rj
to traverse the edges and to turn, respectively, and Cs

j is

the overall service time for agricultural tasks performed

by rj . Note that the turning costs are easily computed

thanks to the orientation graph model. We define the overall

temporal cost of robot j as Cj(xj , sj) = αCe
j (xj) +

β Ct
j(xj) + γ Cs

j (sj) with α, β, γ ∈ R
+ positive weights,

and denote the maximum cost among the robots by Cmax =
maxrj∈R Cj(xj , sj). We can now formally state our novel

multi-Steiner TSP formulation as follows:

min
xij , sij

Cmax +
∑

rj∈R
Cj(xj , sj) (1a)

s.t.
∑

rj∈R
si,j = 1, ∀vi ∈ Vs (1b)

∑

ēp∈ξ
+

i
xp,j ≥ si,j , ∀vi ∈ Vs, ∀rj ∈ R (1c)

∑

ēq∈ξ
−

0

xq,j ≥ si,j , ∀vi∈Vs, ∀rj ∈R (1d)
∑

ēp∈ξ
+

i
xp,j=

∑

ēq∈ξ
−

i
xq,j , ∀vi ∈ V, ∀rj ∈ R (1e)

∑

ēp∈ξ
−

i

fp,j−
∑

ēq∈ξ
+

i

fq,j=si,j , ∀vi∈Vs, ∀rj ∈R (1f)

∑

ēp∈ξ
−

i

fp,j =
∑

ēq∈ξ
+

i

fq,j ,
∀vi∈V\{Vs}, vi 6= v0,
∀rj ∈R

(1g)

εejC
e
j (xj) + εtjC

t
j(xj)

+εsjC
s
j (sj) ≤Kj ,

∀rj ∈ R (1h)

si,j ∈ {0, 1}, ∀vi ∈ Vs, ∀rj ∈ R (1i)

xk,j ∈ {0, 1}, ∀ēk ∈ Ē , ∀rj ∈ R (1j)

0 ≤ fk,j ≤ |Vs| · xk,j , ∀ēk ∈ Ē , ∀rj ∈ R. (1k)

The objective, according to (1a), is to determine the decision

variables while minimizing the maximum temporal cost

Cmax and the cumulative weighted temporal cost of the

robotic platforms, i.e.,
∑

rj∈R
Cj(xj , sj). In this way, we

aim to minimize the total time to perform all the agricultural

tasks, while avoiding unnecessary motions by all the robots.

Regarding the constraints, Eq. (1b) requires that each node

vi ∈ Vs is served by exactly one robot; Eq. (1c) states that,

in order for a robot to serve a node vi ∈ Vs, the node must

be entered by the robot; Eq. (1d) implies that, if a robot rj
has to serve at least one node, then it has to exit the depot v0;

Eq. (1e) states that each time a robot rj enters a node vi, the

same robot must also exit it; Eqs. (1f)-(1g) refer to the single

commodity flow formulation [5] which allows avoiding the

generation of disjoint loops in the robots’ routes; Eq. (1h)

bounds the overall energy consumption of a robot rj to its

capacity Kj ; finally, Eqs. (1i)-(1j) impose the binary nature

of the decision variables xk,j , si,j ∀i, j, k, while Eq. (1k)

regulates the commodity flow variables fk,j .

Sub-optimal formulation: Since the formulated multi-

Steiner TSP is NP-hard, we propose a sub-optimal formula-

tion which reduces the problem dimensionality thus mitigat-

ing its computational load. The basic idea is to decompose

the original formulation into multiple polynomial problems

which require overall substantially less computational time

to be solved, and then, to define a final optimization problem

involving a reduced number of variables. More specifically,

we build a service graph in polynomial time, which embeds

the information of the minimum cost paths between service

nodes for each robot, and then use the latter graph to

compute the decision variables. The sub-optimality of this

strategy arises from the fact that the optimization of the

turning costs at the service nodes is relaxed. However, this

is reasonable in the case the number of agricultural tasks to

perform is significantly lower than the number of possible

field locations, i.e., |Vs| ≪ |V|, as typical for PA settings.

The detailed description of the sub-optimal formulation along

with the formal characterization of the optimality gap and

extensive simulation campaigns can be found in [6].
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A Distributed Online Heuristic for a Large-scale Workforce Task
Assignment and Multi-Vehicle Routing Problem

Diego Deplano, Member, IEEE, Carla Seatzu, Senior, IEEE, Mauro Franceschelli, Senior, IEEE

Abstract— This abstract presents an heuristic online opti-
mization algorithm, based on gossiping, to solve a workforce
routing, task assignment, and scheduling problem with privacy
by design, drawing inspiration from multi-vehicle routing prob-
lems. A real case study is considered, which involves a large
number of technicians tasked with refurbishing and repairing
a large number of photo booth machines spread across a wide
geographic area, spanning a country. The heuristic can be used
both offline and online to accommodate delays and unforeseen
impediments encountered by technicians. The objective is to
maximize enterprise profit by effectively managing the workforce.
The proposed method inherently safeguards the privacy of
real-time geolocation data for the entire workforce, ensuring
it remains undisclosed and inaccessible to the company’s ICT
infrastructure. Numerical simulation – on real data supplied by
DEDEM S.p.A. – demonstrate the performance of the proposed
heuristic in terms of expected net profit for the company.

I. INTRODUCTION

In this work, we examine a real case study provided by
the company DEDEM S.p.A – an international company with
a long history in the passport photo sector, starting in 1962
with the installation of the first photo booth machine in Rome,
Italy – which requires managing a large workforce of tech-
nicians responsible for refurbishing and repairing numerous
photo booths across the entire Italian territory. The core of
the problem involves a dynamic multi-depot (MD) multi-
trip (MT) vehicle routing problem (VRP) with time windows
(TW) [1]. However, the various extensions and modifications
necessary to practically address their workforce management
issues make the scenario particularly challenging from a
computational perspective. Considering its current workforce
of approximately 1 thousand technicians, each tasked with
10÷20 daily assignments distributed geographically, there are
up to 20 thousand daily tasks to be addressed. Consequently,
this necessitates the development of ad-hoc heuristics. In
particular, in our complex scenario, we consider multiple
technicians departing from different depots and encountering
tasks at each visited position, each with a specified duration
and an hourly profit upon completion. Thus, the round trips to
be found must maximize the net profit, factoring in both travel
expenses and the revenue generated from task completion.
Tasks are naturally prioritized based on their proximity to the
technician’s depot and their potential profitability. To address
the company’s requirements, we additionally incorporate the
following features, further intensifying the complexity of the
problem: (i) not all tasks are mandatory; instead, tasks should
only be undertaken if they contribute to the net profit; (ii) tasks
require specific skills for execution, which should be possessed
by the assigned technician; (iii) tasks must be executed within
specific time windows and also within the working hours of
the technician that performs it, accounting for the time needed

to return to their depot; (iv) the problem horizon is pushed
beyond a single day, which entails that multiple routes along
with their scheduling must be devised for each technician,
spanning across multiple days. The above-described problem
is threefold: 1) an assignment problem, because tasks must
be assigned to the technicians; 2) a routing problem, because
the optimal route to visit the tasks must be provided; 3) a
scheduling problem, because the time of the day in which
tasks are executed changes the profit.

II. A GOSSIP-BASED HEURISTIC ALGORITHM

Let S the set of technicians’ depots, by P the set of tasks,
and by Dℓ the set of intra-day depots, one for each extra day
ℓ = 1, . . . , d− 1. Let The potential routes that the technicians
may travel are modeled by a directed graph G = (V,E),
where the set of nodes V consists of the union between the
sets S, P , and ℓ and each edge (i, j) ∈ E correspond to a
viable path between locations i, j ∈ V . The MILP formulation
make use of the following set of variables: Boolean variables
Xi,j ∈ {0, 1} denoting the motion of any technician through
(i, j) ∈ E; Continuous variables Fi,j,k ∈ [0, 1] denoting the
motion of any technician from position k ∈ V through
(i, j) ∈ E; Continuous variables Ui,j ≥ 0 denoting the time at
which the motion of any technician through (i, j) ∈ E occurs.

The cost function to be minimized consists of three terms:

f(X,F,U) = FUEL(X) + TECH(F )− TASKS(X,U). (1)

Firstly, the cost associated with the fuel consumed by the
technicians during the scheduled trip:

FUEL(X) =
∑

(i,j)∈E fijdijXi,j ,

where fij ≥ 0 (eur/km) denotes the fuel cost for the path
(i, j) ∈ E, which takes into account the average speed on that
path; dij ≥ 0 (km) denotes the distance between locations i, j.
Secondly, the cost associated with the technicians’ activities:

TECH(F )=
∑

i∈S qi
∑

j∈P Fi,j,i+
∑d−1

ℓ∈1

∑
i∈Dℓ

qi
∑

j∈P Fi,j,i,

where qi > 0 (eur) represents a fixed daily cost of technician
i ∈ S. Thirdly, the profit associated with the tasks’ execution:

TASKS(X,U)=
∑

j∈P gj
∑

i∈V [(24·d−tij−δi)Xi,j−Ui,j ],

where gj > 0 (eur/hour) denotes the hourly profit of task the
j-th task; tij (hour) denotes the travel time of path (i, j) ∈ E;
δi > 0 (hour) denotes the time needed to execute the i-th task.

Remark 1: We omit the presentation of the set of constraint
for space limitation, which can be found in [2].

We now describe the proposed a heuristic sub-optimal ap-
proach based on gossiping – a distributed computing technique



used to disseminate information efficiently across a network
of nodes – to minimize eq. (1) when the complete problem
becomes too large to be solved optimally. The strategy is that
of picking at random one pair of technicians and computing
a local optimal solution by considering the tasks already
assigned to them, if any, together with some unassigned tasks.
Once the optimal solution is found, another pair of technicians
is considered, until it is not possible anymore to improve any
of the schedule for each pair. This approach is quite efficient
for mainly two reasons: 1) each local optimization problem is
much easier to solve if compared to the global problem; 2)
local optimizations involving different technicians can be run
simultaneously in parallel. We limit the above described gossip
technique over a subset of all these pairs by exploiting their
geographical distribution. We do so by means of the so-called
“Delaunay graph” [3].

Definition 1: Considering the set of points S scattered over
a geometric space, the Delaunay graph GD = (S,ED) is the
graph whose set of edges in ED forms a triangulation such
that no point in S is inside the circumcircle of any triangle
formed by the edges of E.

The Delaunay graph provides a nice connectivity structure
among the input points because for any given node, its incident
edges are connected to the nodes that are closer to it than
any other node in the set. More importantly, the maximum
number of edges in a Delaunay graph is equal to 3n − 6 for
n ≥ 3, i.e., it increases linearly with the number of nodes,
which scales much better than a complete graph with a number
of edges equal to n(n − 1)/2, which increases quadratically.
The Delaunay graph is constructed online based solely on
the technicians’ current tasks, thereby circumventing intrusive
geolocation and ensuring technician privacy. The proposed
approach can be used both offline, to compute an initial
solution to the problem, and online, to continue improving
the initial solution while taking into account the following
realistic occurrences: delays due to traffic jams or unexpected
complications during the execution of the tasks or sudden
unavailability of some technicians: in this case, the algorithm
is able to re-arrange the schedules of the technicians in order
to minimize the loss; availability of new technicians or new

Fig. 1: (Left) Real routes retrieved from DEDEM S.p.A.’s data.
Some tasks are not executed due to time window constraints.
(Right) Routes obtained by the proposed heuristic. Improved
routing and assignments allow more tasks to be executed.

tasks: in this case, the algorithm is able to compute new
solutions in real time in order to increase the profit. We have
implemented the proposed heuristic in Python programming
language, utilizing Gurobi 11.0 (with Academic Licence) as
the optimization solver.

III. NUMERICAL SIMULATIONS

We now discuss a numerical simulation of the proposed
heuristic using real data provided by DEDEM S.p.A.. We
have collected anonymized data of 16 technicians’ tours in
a working week of 5 days for a total of 932 tasks to be
executed across 5 Italian regions (Lazio, Campania, Toscana,
Umbria, Abruzzo). The actual routes taken by the technicians
are illustrated in Fig. 1, encompassing 814 tasks (approxi-
mately 88% of the total available) completed over a span of
5 workdays. The expected profit, computed as per eq. (1),
amounts to C 281.695, 14. A closer inspection of Fig. 1 reveals
that the company currently assigns tasks to technicians based
on their geographic proximity.

1) Heuristic offline solution: We simulate the execution the
heuristic solution during the weekend to compute a solution
for the next working week. The algorithm ran for a total of
about 36 hours, from Saturday at 1 AM to Sunday at 1 PM.
The routes of the heuristic solution are illustrated in Fig. 1,
encompassing 832 tasks (approximately 90% of the total
available) completed over a span of 5 workdays. The expected
profit, computed as per eq. (1), amounts to C 326.318, 66.
When compared with the real routes, the solution found by the
proposed heuristic allows to perform 18 more tasks (> 2%)
with an extra profit of C 44.623, 52 (> 15%).

2) Heuristic online solution: We now consider the scenario
in which an unexpected event does not allow the normal
execution of the tasks in the schedule: a technician, to which
were assigned 19 tasks, is unavailable on the first day, which
would cause a profit loss of C 11.094, 52 if no action is taken.
We simulate the real-time execution of the proposed heuristic
during the first day of the workweek. Within the first two
hours of the day, 17 out of 19 tasks were assigned to other
technicians, after which it continued to optimize the routes
for the remainder of the day without assigning any additional
tasks, but still changing them if convenient. At the end of
the day, the profit loss is C 1.055, 41, less than 10% of the
maximum possible loss.
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Fig. 1: PathPoly-NN approximates the minimum-time vehicle path joining the
waypoints Pi and Pf .

I. INTRODUCTION

Autonomous vehicle racing is becoming increasingly popular in
research as a platform to advance autonomous driving technologies.
Recently, graph-based trajectory planners have been developed for
autonomous racing with obstacle avoidance [1]. These planners use
a graph of motion primitives, which are trajectories connecting pairs
of waypoints. The existing methods to compute motion primitives are
optimization-based, geometric curve-based, and learning-based, each
with its drawbacks: optimization methods are computationally heavy,
geometric curves neglect the vehicle dynamics, and neural networks
need large training sets to generalize well.

This paper presents novel neural network (NN)-based motion
primitives for autonomous racing, aimed at learning and generalizing
the minimum-time vehicle trajectories. A detailed description of our
motion primitives can be found in our recent work [2]. Here, we
provide a brief overview.

II. METHODS

Our novel motion primitives have two key components:

1) PathPoly-NN: A new NN to compute the minimum-time path.
2) FW-BW Method [3]: A semi-analytical solution to compute

the minimum-time vehicle speed profile, considering the
longitudinal dynamics and a speed-dependent g-g diagram
constraint.

A. PathPoly-NN

PathPoly-NN is a neural network designed to learn the vehicle paths
obtained from a minimum-time economic nonlinear model predictive
controller (E-NMPC). As shown in Fig. 1, PathPoly-NN generates the
path connecting the waypoints Pi and Pf , with a center-line distance
LH varying from 4 to 45 meters. Longer horizons can be achieved by
concatenating multiple motion primitives. The path is described using
the curvilinear coordinates {ζ, n, ξ}: ζ is the curvilinear abscissa
along the center-line, n is the lateral position, and ξ is the relative
yaw angle.

1) Inputs: As shown in Fig. 1, the inputs of PathPoly-NN are:

• The initial lateral coordinate ni (in point Pi), relative yaw angle
ξi, forward speed vxi , yaw rate Ωi, and the first and second
derivatives {n′

i, n
′′
i } with respect to ζ.

• The final lateral coordinate nf (in point Pf ), relative yaw angle
ξf , and the derivatives {n′

f , n
′′
f} with respect to ζ.

• The road curvature κi in the initial center-line point Ci, and the
curvature variation ∆κ over the horizon.

Fig. 2: Comparing the RMS of the lateral coordinate prediction error (ñ) on
the test dataset, using PathPoly-NN and the benchmarks. Our PathPoly-NN
outperforms the benchmarks for all the considered values of LH .

Fig. 3: Comparing the lateral coordinates n and relative yaw angles ξ
computed by PathPoly-NN and E-NMPC, for different scenarios.

Let us collect the inputs in the following vectors p and p̃:

p =
[
ni ξi vxi Ωi nf ξf κi ∆κ

]T
p̃ =

[
n′
i n′′

i n′
f n′′

f

]T (1)

2) Outputs: PathPoly-NN computes the lateral coordinate n(ζ) of
the vehicle path by combining two neural polynomial functions:

n(ζ) =

first neural polynomial︷ ︸︸ ︷[( D∑
q=1

f1q (p, p̃) · ζ
q
)
+ ni

]
ϕ
(LH

2
− ζ

)
+

+

[( D∑
q=1

f2q (p, p̃) · (ζ − LH)q
)
+ nf

]
︸ ︷︷ ︸

second neural polynomial

ϕ
(
ζ − LH

2

) (2)

Here, D is the polynomial degree, and ϕ(·) is an activation function
that combines the two polynomials. The functions {f1q (·), f2q (·)}
combine feedforward NNs with analytical components, ensuring the
boundary conditions {ni, ξi, nf , ξf , n

′
i, n

′′
i , n

′
f , n

′′
f} are exactly met

(see [2] for details). PathPoly-NN also computes the path’s curvilinear
abscissa s(ζ), curvature profile κp(ζ), and relative yaw angle ξ(ζ),
using relations among the curvilinear coordinates.

3) Training & Testing: PathPoly-NN is trained with supervised
learning, to approximate the solutions of minimum-time E-NMPC
on 5 circuits, with different prediction horizons LH . The test set
contains the E-NMPC solutions on a new track. The E-NMPC
problem uses a kineto-dynamical vehicle model and g-g acceleration
constraints, as described in [2]. The total number of training examples
is 18000, which is significantly smaller than the 2.7 million examples



CPU time
Horizon length LH E-NMPC cubic polynomials + FW-BW G2 clothoids + FW-BW PathPoly-NN + FW-BW

(benchmark) (benchmark) (benchmark)
Mean Max Mean Max Mean Max Mean Max

20 m 4534.6 µs 22509.0 µs 361.1 µs 460.8 µs 303.7 µs 550.6 µs 46.2 µs 70.1 µs
35 m 5407.2 µs 31229.4 µs 754.7 µs 956.4 µs 592.0 µs 823.3 µs 48.5 µs 82.8 µs
45 m 7016.0 µs 42163.3 µs 1190.3 µs 1423.0 µs 752.8 µs 968.5 µs 53.4 µs 103.1 µs

TABLE I: Comparing the CPU times to compute a motion primitive, using the proposed method (last two columns) and the benchmarks.

Fig. 4: Example of dynamic obstacle avoidance. Our motion primitives closely
approximate the E-NMPC maneuver, with a noticeable decrease in CPU times.

(6000 circuits) used to train the NN of [4]. Indeed, the specialized
architecture of PathPoly-NN yields a better generalization with small
training sets.

III. RESULTS

We evaluate our motion primitives using the following criteria:
• Accuracy of the vehicle path (lateral coordinate n, relative yaw

angle ξ) and speed profile, w.r.t. minimum-time E-NMPC.
• Computational efficiency.

Our motion primitives are compared with the following methods:
1) Minimum-time E-NMPC.
2) A general-purpose neural network (GP-NN), similar to [4].
3) Cubic polynomials, used by [5].
4) G2 clothoid curves, used by [1].

Our motion primitives and all the benchmarks are implemented in
C++ code, and are executed on a 2.6 GHz 6-Core Intel i7 processor.
Fig. 2 plots the accuracy (RMS of the lateral deviation ñ) of
PathPoly-NN and the benchmarks on the test dataset, for different
horizon lengths LH . Fig. 3 shows that PathPoly-NN accurately
approximates the lateral coordinate n and the relative yaw angle
ξ of the E-NMPC vehicle path, on unseen test scenarios. Table I
reports the corresponding computational times. In comparison with
the general purpose neural network (GP-NN), our PathPoly-NN
achieves better generalization and accuracy (around one order of
magnitude in RMSE), with a much smaller number of parameters (284
vs 11476). Compared with cubic polynomials and G2 clothoids, our
primitives are more accurate and faster in computation by 1-2 orders
of magnitude. Our motion primitives yield similar vehicle trajectories
and maneuver times as minimum-time E-NMPC, with computational
times two orders of magnitude lower. Indeed, in the example scenarios
of Fig. 5, the PathPoly-NN’s maneuver is the closest to the E-NMPC
one. The corresponding speed profile is also close to the E-NMPC
one, yet with local differences due to the different path curvatures.
Conversely, cubic polynomials and G2 clothoids yield suboptimal or
infeasible trajectories. Fig. 6 plots the concatenation of two motion
primitives: in the transition between two primitives, our PathPoly-NN
provides a continuous curvature profile, which is the closest to the
E-NMPC solution.

Future work will integrate the new motion primitives into the
graph-based planner of [1] for dynamic collision avoidance, in
challenging scenarios. An example of dynamic obstacle avoidance
is shown in Fig. 4, where our primitives closely approximate the
E-NMPC maneuver, with a noticeable decrease in computational
time.

Fig. 5: Comparing the vehicle paths, lateral coordinates n, and vehicle speed
vx generated by our PathPoly-NN and the benchmarks (cubic polynomials
and G2 clothoids), on a corner of the Pista Azzurra circuit.

Fig. 6: Concatenation of two motion primitives: our PathPoly-NN provides a
continuous path curvature κp, which is the closest to the E-NMPC solution.
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Following Zero-curvature Paths Using the
Non-orthogonal Bishop Parametrization

Filip Dyba⋆ and Marco Frego

Abstract—The Serret–Frenet frame is widely used as an or-
thonormal basis of SO(3), but it cannot be applied to curves with
zero-curvature arcs due to the frame indefiniteness. We discuss
an alternative based on the Bishop frame and show the advantage
both in simulation and with a robotic arm.

Index Terms—Bishop Parametrization, Fixed-base Manipula-
tor, Path Following

I. INTRODUCTION

The Path Following (PF) task is one of the main robotic
problems, requiring to enforce a robot to approach the desired
path and move along it [1]. Such a control problem definition
is favourable, especially for autonomous robots, due to the lack
of time dependency. A path is described purely geometrically
and can be easily obtained with motion planning algorithms.

There are different ways to solve the PF problem. One of the
most suitable approaches is based on curvilinear parametriza-
tions [2], [3]. They allow defining a local frame which evolves
along a curve according to its geometry. However, the Serret–
Frenet parametrization, which is frequently applied to the PF
task, e.g. [4], [5], has serious disadvantages. If the curvature
is equal to zero, a singularity emerges in the frame definition.
Indeed, the Serret–Frenet frame is undefined in zero-curvature
points and prone to discontinuous changes in the evolution
along the curve [6]. Therefore, a description using the Bishop
parametrization [7] has been developed to control a robot
performing the PF task [8], [9]. In this work, we focus on
a fixed-base manipulator.

II. ROBOT DESCRIPTION W.R.T. THE BISHOP FRAME

The Bishop frame [7] consists of three vectors spanning an
orthonormal basis in R3, {T ,N1,N2}, where T is the vector
tangent to a curve, while N1 and N2 are normal vectors,
chosen arbitrarily in the initial state to span relatively parallel
vector fields. Once selected, the Bishop frame preserves its
uniqueness and minimizes rotations along a curve.

Let us define the curvilinear distance, s, which is the dis-
tance on the path from its beginning, and a matrix comprising
the basis vectors, S =

[
T N1 N2

]
∈ SO(3). Then, the

frame evolution along the curve is given by the equation

dS(s)
ds

=S(s)

 0 −k1(s) −k2(s)
k1(s) 0 0
k2(s) 0 0

=S(s)W (s), (1)

⋆ Correspondence to F. Dyba (filip.dyba@pwr.edu.pl), who is with the
Department of Cybernetics and Robotics, Wroclaw University of Science
and Technology, Wroclaw, Poland.

M. Frego (mfrego@unibz.it) is with the Faculty of Engineering of the Free
University of Bozen-Bolzano, Bolzano-Bozen, Italy.

where k1(s) and k2(s) are geometric invariants of a curve
depending on its curvature and torsion [7]. Having defined the
frame evolution along a path, the robot description with respect
to the path is now developed. Assuming that the manipulator
guidance point, located in its end-effector, is non-orthogonally
projected onto the path, the following model of the robot
kinematics with respect to the path is obtained [5]

ḋ = STJq̇ −
(
ṡ 0 0

)T − ṡWd = Gq̇ + F , (2)

where d is the end-effector position with respect to the Bishop
frame, J is the Jacobian projecting joint velocities into the
end-effector velocities in the Cartesian space, and q is the
vector of joint positions in the configuration space.

III. CONTROL LAW

The robot description with respect to the path has the form
of a non-integrable constraint of the first order. If it is
satisfied, the manipulator follows the given path correctly.
Due to the similarity to non-holonomic constraints, the control
law is designed based on the backstepping algorithm. Firstly,
a kinematic controller is proposed to satisfy the constraint (2)

q̇ref = G#(ḋd −Kked − F ), (3)

where dd is the desired position with respect to the Bishop
frame, ed = d − dd is the path following error, Kk is the
positive-definite gain matrix, and G# denotes the Moore–
Penrose pseudoinverse of G. However, the generated veloc-
ity profiles, q̇ref, cannot be commanded directly, due to the
robot dynamics. Hence, a universal dynamic controller, the
λ - tracking algorithm [10], is used to perform the reference
velocity profiles

u = −K(t)E(t), (4)

where E(t) = Kdėq+Kpeq and ėq = q̇− q̇ref is the velocity
profile following error, Kd, Kp are positive-definite matrices,
and K(t) is the coefficient tuned by the adaptation law

K̇(t) =

{
(∥E(t)∥ − λ) · ∥E(t)∥, ∥E(t)∥ > λ,

0, ∥E(t)∥ ≤ λ,
(5)

where λ > 0 is the arbitrarily selected radius of the dead zone.

IV. STUDY RESULTS

The proposed control law was used to follow a straight
line, which is the most evident example of a zero-curvature
path. The experimental validation was conducted using a re-
dundant KINOVA® Gen3 Ultra lightweight robot and the
dedicated KINOVA® Kortex™ software (C++). The simulation



study was performed for an equivalent direct-drive model of
the manipulator in Matlab/Simulink environment. The
achieved results are presented in the following figures. In
Fig. 1, the performed path, the Bishop frame evolution, and
the path following errors are shown for both simulation and
experimental studies; in Fig. 2, the velocity profile following
errors are compared.

(a) Performed path and Bishop frame evolution
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Fig. 1: Path following (blue solid: Experiment, red dashed:
Simulation)

V. CONCLUSIONS

The obtained results are consistent and confirm the use-
fulness of the proposed control law. The desired path is
followed correctly and the errors tend to zero. However, in the
experimental results more noise may be observed. It results
from the sensor accuracy and disturbances which were not
considered in the simulation study. Nonetheless, the errors are
negligibly small and do not impact the successful manipulator
performance. It is concluded that the proposed algorithm based
on the non-orthogonal Bishop parametrization is an efficient
method to follow paths with zero-curvature points.
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Autonomous Lunar Rendezvous Trajectory Planning and Control Using Nonlinear
MPC and Pontryagin’s Principle

Giordana Bucchioni, Michele Pagone, Carlo Novara

I. INTRODUCTION

We propose a Nonlinear Model Predictive Control (NMPC)
technique, based on the Pontryagin Minimum Principle [1], for
a minimum-propellant autonomous spacecraft (SC) rendezvous
maneuver in a non-Keplerian Lunar orbits. The relative motion
between the chaser and the target is described by the nonlinear
dynamics of the circular restricted three body-problem, written in
a moving reference frame called Local-Vertical-Local-Horizontal
(LVLH), posing unique challenges due to the complex and un-
stable dynamics of near-rectilinear halo orbits [2]. Key aspects
of the proposed NMPC include trajectory optimization, maneuver
planning, and real-time control, highlighting its ability to satisfy
complex mission requirements, while ensuring safe and efficient
spacecraft operations, in the presence of input and nonlinear/non-
convex state constraints. The proposed formulation allows us to
design minimum-propellant controller, by minimizing the L1 of
the controlled input within the cost function, enabling an optimal
control signal resulting to be bang-bang in time [3]. As proof of
the actuality of the topic, the case study based on the Artemis III
mission – where the docking of the Orion spacecraft (herein called
chaser) to the Gateway station (herein called target) is planned –
is illustrated in order to demonstrate the efficiency of the proposed
approach to perform the very last part of the rendezvous operations,
showcasing its potential for enhancing target tracking accuracy,
while reducing propellant consumption and ensuring the reliability
of the manoeuvre.

II. SPACECRAFT DYNAMICS AND RVD SCENARIO

The rendezvous manoeuvre is performed following a series of
way-points – called hold-points – and, in the results are also
contemplated the presence of a spherical obstacle that shall be
avoided and a conic line-of-sight constraints for the final phase
of the maneuver (see Figure 1). The choice of a spherical shape
(and/or ellipsoidal) is motivated by the fact that the safety zones of
a space object usually have this kind of shape.

The relative position of the chaser ρ with respect to the target, in
the LVLH reference frame, is described by the following nonlinear
affine-in-the-input system of differential equations [4]:

ρ̈ = −2
[
ΩIL

]
ρ̇−

[
Ω̇IL

]
ρ−

[
ΩIL

]2
ρ+

+ µ

(
rot − rom

||rot − rom||3 − ρ+ rot − rom
||ρ+ rot − rom||3

)
+

+ (1− µ)

(
rot − roe

||rot − roe||3
− ρ+ rot − roe

||ρ+ rot − roe||3

)
+ u,

(1)

where ΩIL is the angular velocity of the LVLH frame with respect
to an inertial frame, µ and (1− µ) are the nornalized positions of
Earth and Moon in the synodic frame, and rom, rom, roe are the

G. Bucchioni is with the Department of Information Engineering, Uni-
versità di Pisa. M. Pagone and C. Novara are with the Department of
Electronics and Telecommunications, Politecnico di Torino. Corresponding
author: giordana.bucchioni@unipi.it.

distance of the Moon, SC, and Earth with respect to the Earth-Moon
system center of mass, respectively. The operator

[
ΩIL

]
consists

of the skew-symmetric matrix for the vector cross-product.

III. PONTRYGIN-BASED MPC APPROACH

The chaser-target relative dynamics can be viewed as an affine-
in-the-input nonlinear system

ẋ(t) = f(x(t)) + u(t) (2)

where x(t) ∈ X ⊆ Rnx is the state vector at time t ∈ R,
u(t) ∈ U ⊆ Rnu is the input vector (where U ∋ 0 is a convex,
closed, and compact set). The measurements of the state vector
are sampled with period TS > 0. At each sampling time t = tk, a
prediction of the system state x̂(t) over the time interval [tk, tk+Tp]
is performed, where Tp ≥ TS is the prediction horizon.

The nonlinear MPC optimal control problem is formulated as
follows.

u∗ = argmin
u

J
(
x(t), u(t)

)
subject to:
˙̂x(τ) = f(x̂(τ)) + û(τ), x̂(tk) = x(tk),

x̂(τ) ∈ X ⊂ Rnx , û(τ) ∈ U ⊂ Rnu , ∀τ ∈ [tk, tk + Tp].

(3)

Hence, associating to each solution x̂ of (3) the tracking error
x̃(τ) = x̂(τ)− xr , we employ the following performance index

J =

∫ tk+Tp

tk

(
∥x̃(τ)∥2Q + ∥Rû(τ)∥2

)
dτ + ∥x̃(tk + Tp)∥2P.

(4)

According to [5], the Hamiltonian of the system, for the RvD
scenario is

HRvD = x̃TQx̃+ ∥Ru∥2 + λT
r ρ̇+ λT

v ρ̈. (5)

where λr and λv are the covectors associated to the chaser
relative position ρ and the relative velocity ρ̇, respectively. Whereby,
accounting (1), one has

HRvD = x̃TQx̃+ ∥Ru∥2 + λT
r ρ̇+ λT

v

[
−2

[
ΩIL

]
ρ̇+

−
[
Ω̇IL

]
ρ−

[
ΩIL

]2
ρ+ µℓ(ρ) + (1− µ)κ(ρ) + u

] (6)

where ℓ(ρ) and κ(ρ) are auxiliary functions depending on the
chaser/target positions with respect to the Earth and the Moon.

We define the magnitude of the thrust acceleration as Γ
.
=

∥u∥2 and the thrust acceleration unit vector as ū. Considering
that R is a diagonal definite positive matrix, whose entries are
all equal (common setting in the aerospace MPC design), we
consider ∥Ru∥2 = ∥R∥2∥u∥2. We introduce the notion of primer
vector, the unit vectors referred to the velocity co-state represent
the engines optimal firing direction and defined as p

.
= −λv .

Hence the optimal acceleration direction is, ū∗ = p/P , being



Fig. 1. Scheme of the main mission benchmarks.

P = ∥p∥2 = −λT
v ū

∗ the primer vector magnitude. By the previous
notion, the Hamiltonian turns into

HRvD = −(P − ∥R∥2)Γ + λT
r ρ̇+ λT

v

[
−2

[
ΩIL

]
ρ̇+

−
[
Ω̇IL

]
ρ−

[
ΩIL

]2
ρ+ µℓ(ρ) + (1− µ)κ(ρ)

]
.

(7)

Hence, the Hamiltonian must be minimized over the choice of
the thrust magnitude Γ, which appears linearly in (7). Thus, the
optimal control problem solution would lead to an input signal with
an infinite magnitude. If the admissible input set is bounded, the
minimization of the Hamiltonian depends only on the algebraic
sign of the Γ coefficient, which, in aerospace literature is defined
as switching function Υ = P − ∥R∥2. The sign of Υ defines the
policy for the engines power on/off and the thrust is allowed to
assume only the maximum or zero value. The optimal direction of
the thrust is driven by p = −λv . Therefore, the optimal control
policy is:

u∗ =

Γmax
p

∥λv∥2
if Υ > 0,

0 if Υ ≤ 0,
(8)

where, according to the Pontryagin principle, the evolution of the
costate is described by

λ̇ = −∇xHRvD. (9)

Finally, the state constraints are implemented within the optimal
control problem by employing the penalty function approach, in
the PMP framework, described in [1].

IV. SIMULATION RESULTS

The results show how the proposed control technique is capable
of successfully performing the rendezvous approach with satisfying
accuracy on the relative state at the docking point and fuel-
saving performances. The first phase of the maneuver, going from
the initial conditions, to the intermediate hold point located in
[−100,−5,−5]⊤ km, is shown in Figure 2, while the final target
approach in Figures 3-4. Beside the accuracy in tracking the hold
point and target locations, it is worth to appreciate the capability
of the spacecraft in autonomously coping state constraints, whereas
they can be both nonlinear and non convex.
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I. INTRODUCTION

In mobile robotics and autonomous vehicles, motion or path-
planning involves computing an optimal trajectory between an
initial and final configuration. Feasible paths must satisfy con-
straints such as the upper bound for path curvature, related to the
vehicle’s minimum turning radius (κmax = 1/ρmin), and constant
speed. The Markov-Dubins path (MDP)[1] computes the minimum
length path (min

∫ L

0
1 dℓ) between two points (Pi = (xi, yi) and

Pf = (xf , yf )) with given initial and final orientations (ϑi and ϑf )
and a maximum curvature constraint (κmax > 0)[2]. The Multipoint
Markov-Dubins Problem (MPMDP) generalizes this to a sequence
of points using interpolation with Dubins paths [3], fixing only the
initial and final orientations.
A special case of MPMDP is the Three Points Dubins Prob-
lem (3PDP), which has applications in high-level planners for
the Dubins Travelling Salesman Problem (DTSP) [4]. This path
passes through three points, Pi, Pm, and Pf , with given initial
and final orientations, ϑi and ϑf , and a free middle point Pm.
The problem is one-dimensional, with the only unknown being
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Fig. 1: Example and scheme of an instance of the 3PDP. This path is an
example of type LSLSR.

the angle at the middle point, ϑm. Once ϑm is determined, the
solution becomes trivial. The solution is discontinuous and non-
smooth, often requiring brute force, Dynamic Programming, or
NLP/MINLP methods [5]. Some works approximate the solution
assuming only CSC paths and discarding CCC [6]. Others use
inversive geometry [6] and solve nonlinear systems with bisection,
improving computational time by 14 times. Chen et al.[7] propose
a polynomial-based method computing up to 180 pairs of Dubins
paths. Parlangeli et al.[5] present a geometry-based method using
an ellipse, achieving a 150-fold speed-up compared to DBM.

II. DERIVATION OF THE DUBINS PATH WITH TRIGONOMETRY

The original problem can be simplified by translating, rotating,
and scaling the configuration so that xi = yi = 0 and xf = d, yf =
0, with a unitary maximum curvature κmax = 1. The transformation
involves translating by −(xi, yi), rotating around (0, 0) by an angle
−ϕ where ϕ = atan2(yf − yi, xf − xi), and scaling by κ−1

max =

ρmin. Thus, d =
(
(xf − xi)

2 + (yf − yi)
2
)1/2

/κmax, α = ϑi + ϕ
and β = ϑf+ϕ become the initial and final angles. The solution is a
sequence of three curves (lines or arcs), expressed as, for j ∈ 0, 1, 2,

x(ℓ) = xj + s(sin(ϑj + sℓ)− sin θj) + (1− s2)ℓ cos θj ,
y(ℓ) = yj + s(cos θj − cos(ϑj + sℓ)) + (1− s2)ℓ sin θj ,
θ(t) = ϑj + sℓ,

Where ℓ is the curvilinear abscissa, x(ℓ) and y(ℓ) are the coor-
dinates, and θ(ℓ) is the orientation [8]. Define x0 = y0 = 0 and
ϑ0 = α as the initial point. When s = 0, the function represents
a line segment; when s = 1, the curve is a left-turning arc of a
unit circle; and when s = −1, the arc turns right. The Dubins
problem involves three segments (CSC or CCC) with known initial
and final coordinates and headings in the transformed system. We
can separate solutions into two families based on the presence or
absence of the middle singular arc (a line segment): CSC and CCC.

A. Case CSC

This case occurs when s2 = 0 and, depending on the signs of s1
and s3, results in the curves LSL, RSR, LSR, and RSL. It can be
divided into two subcases: CSC+, where the two circular arcs turn
in the same direction (LSL and RSR), and CSC−, where the arcs
turn in opposite directions (LSR and RSL). Each subcase has two
different solutions. We use the following notation for compactness:

S− = sinα− sinβ, C− = cosα− cosβ,
S+ = sinα+ sinβ, C+ = cosα+ cosβ,

Pα,β = {sinα, cosα, sinβ, cosβ}.

1) The subcase CSC+: LSL and RSR: This solution type falls
into the case CSC+where s2 = 0 and s1 = s3 = s. Hence, we can
rewrite the problem in terms of the parameters Pα,β and solve for
ϑS and the lengths ℓ1 and ℓ3 as follows:

ϑCSC+

S = atan2
(
−C−, d+ sS−) mod π,

ℓCSC+

1 = s(ϑCSC+

S − α) mod 2π,

ℓCSC+

2 = (d+ sS−) cosϑCSC+

S − sC− sinϑCSC+

S ,

ℓCSC+

3 = s(β − ϑCSC+

S ) mod 2π.

The derivatives of the lengths with respect to α and β are:

∂α(ℓ
CSC+

) = s(cos(ϑCSC+

S − α)− 1),

∂β(ℓ
CSC+

) = s(1− cos(β − ϑCSC+

S )).

2) The subcase CSC−: LSR and RSL: This solution type falls
into the case CSC−, where s2 = 0 and s1 = s and s3 = −s,
obtaining a polynomial equation:

ϑS = π + 2arctan(X), cosϑS =
X2 − 1

X2 + 1
, sinϑS =

−2X

X2 + 1
.

Therefore, we can obtain a quadratic equation in X as follows

0 = (2− C
+)X2 + 2(s d+ S

+)X + (2 + C
+).

Furthermore, we can substitute ϑS and solve for the lengths.

ϑCSC−
S = atan2(−2X,X2 − 1),

ℓCSC−
1 = s(ϑCSC−

S − α) mod (2π),

ℓCSC−
2 = (d+ sS+) cosϑCSC−

S − sC+ sinϑCSC−
S ,

ℓCSC−
3 = s(ϑCSC−

S − β) mod (2π).

And the derivatives of the lengths with respect to α and β are:

∂α(ℓ
CSC−

) = s(cos(ϑCSC−
S − α)− 1),

∂β(ℓ
CSC−

) = s(1− cos(β − ϑCSC−
S )).

The upper bound of the derivative is 2 (Lipschitz constant).



TABLE I: Benchmark test with mean µ and standard deviation σ of
iterations and computational times.

Method Iter Time (ms) N. DC
µ(N) σ(N) µ(T) σ(T)

PS 85.53 10.65 0.174 0.0359 171.1
PS + 748 46.27 10.74 0.122 0.0309 92.5
PT 73.69 7.96 0.149 0.0256 147.4
PT + 748 54.98 8.74 0.115 0.0253 109.9

DBM 360 0.0 54.845 3.2101 720
iDPP [3] 128 0.0 19.455 0.7400 256

B. Case CCC

The case CCC, happening when s2 ̸= 0 (s1 = s3 = −s2 = s):

tCCC =
3 + cos(α− β)− s dS−

4
− d2

8
, if tCCC ∈ [−1, 1]

ℓ2 = arccos(tCCC) and ℓ2 = 2π − arccos(tCCC);

solve the linear systems where α̃ = α− sℓ2 and β̃ = β + sℓ2:[
sinα− sin α̃ s(cosα− cos α̃)
cosα− cos α̃ s(sin α̃− sinα)

] [
cos ℓ1
sin ℓ1

]
=

1

2

[
s d+ S−

C−

]
,

[
sin β̃ − sinβ s(cosβ − cos β̃)

cos β̃ − cosβ s(sin β̃ − sinβ)

] [
cos ℓ3
sin ℓ3

]
=

1

2

[
s d+ S−

C−

]
.

Compute ℓ1 and ℓ3 and discard the solutions that do not satisfy
α+ s(ℓCCC

1 − ℓCCC
2 + ℓCCC

3 ) = β mod 2π.
The derivatives of the lengths with respect to α and β are:

∂α(ℓ
CCC) = ± sin(α− β) + s d cosα

2
√

1− (tCCC)2
− s,

∂β(ℓ
CCC) = s∓ sin(α− β) + s d cosβ

2
√

1− (tCCC)2
.

The sign depends on the second solution for ℓ2 is used.

III. THREE POINTS DUBINS PROBLEM (3PDP)

Three Points Dubins Problem solution is a concatenation of 2
Dubins paths, yielding the total length sum of the two elementary
Dubins paths lengths [9]. Given the angle of the middle point being
the only unknown variable, ℓtotal is a function of ϑm

ℓtotal(ϑm) = ℓdub1(ϑm) + ℓdub2(ϑm),
ℓ′total(ϑm) = ℓ′dub1(ϑm) + ℓ′dub2(ϑm).

With the results of the previous section, the derivatives are:

ℓ′dub1(ϑm) = ∂βℓdub1∂ϑmβ1,
ℓ′dub2(ϑm) = ∂αℓdub2∂ϑmα2.

Recalling that for a single segment ϑi = α−ϕ and xf = d, yf = 0,
ϑf = β−ϕ and ϕ = atan2(yf − yi, xf − xi), we get ∂ϑmβ1 = 1
and ∂ϑmα2 = 1.
However, both angles ϕ1 = atan2(ym − yi, xm − xi) and ϕ2 =
atan2(yf − ym, xf − xm) do not depend on ϑm and can be
considered as constants,

ℓ′total(ϑm) = ∂β1ℓdub1(ϑi, β1 − ϕ1) + ∂α2ℓdub2(α2 − ϕ2, ϑf ).

The lengths are piecewise continuous functions of ϑm. Therefore,
we need to use a numerical method to find the optimal angle ϑm

that minimizes the total length of the path (figure 2).

IV. NUMERICAL TESTS AND RESULTS

We tested our algorithm, which uses pattern search and root
finding, on 10 000 random 3PDP against the brute force method
(DBM) and the iterative Dubins path planner (iDPP). Table I and
Table II show that our algorithm outperforms the benchmarks
in iterations and computational time. Using root finding further
reduces iterations and time while achieving machine-precision
optimal solutions.

TABLE II: Comparison between the number of iterations and time with
respect to brute force DBM.

Algorithm Iteration number ratio Time ratio

Pattern search 4.27013 325.655
Pattern search + 748 6.57409 471.777
Pattern trichotomy 4.93803 374.726
Pattern trichotomy + 748 6.67441 493.497

iDPP [3] 2.8125 2.82009
IM [6] n/a 5
PBM [7] n/a 25-45
GBM [5] n/a 150
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Fig. 2: Example of the total length of a three-point Dubins path
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Tracking of Clothoids via Internal Model Principle

Nicola Mimmo1, Marco Frego2, Angelika Peer2

Abstract— Clothoids are curves characterised by linear cur-
vature. Their use is transversal in many applications ranging
from motorway junctions to computer graphics passing through
computer numerically controlled machines. Tracking these
curves has an impact on efficiency in many fields. We present
some preliminary results on a control system for the tracking of
clothoids that relies on the so-called Internal Model Principle.

I. INTRODUCTION

In control theory, trajectory tracking is an important field
of research because it enables many other applications, which
are based on precision, efficiency, resilience to disturbances,
and adaption to unforeseen events that move the current state
of a system far from its prescribed nominal position.

A paradigm for solving the trajectory tracking problem
requires the knowledge of the current tracking error and
the model that generates the reference trajectory [1]. Then,
given the current tracking error, the asymptotic tracking of
trajectories is related to the ability of the control system to
embed the model that generates the reference signal. The
techniques that exploit this fundamental approach go under
the umbrella of the Internal Model Principle (IMP) [2]. The
corresponding component of the controller that generates the
control needed to keep the tracking error zero, uniformly on
time, is called the Internal Model Generator (IMG).

Clothoids are used to design paths and trajectories
starting with their intrinsic parametrisation. Examples in
this family that can be represented with clothoids are lines,
biarcs, Dubins, Reeds-Shepp and helices. An advantage
of these primitives is that they naturally possess arclength
parametrisation, and also, their curvature has a special (read
simple) expression of the arclength, e.g., it is linear for
clothoids. This latter property is of paramount importance
because it is strictly connected with the lateral accelerations
that a body endures during the motion. This reflects in the
comfort of passengers, in the mechanical stress suffered by
the parts of a vehicle, and it has a deep connection with
what our brain perceives as visually appealing and is a
fundamental concept in aesthetic shape design. They also
represent the natural trajectories a car-like generates when
moving at a constant speed [3].

We propose the design and adoption of an Internal Model
Generator and the related control system when the exogenous

1 The author is with the Department of Electrical, Electronic, and
Information Engineering “Guglielmo Marconi”, University of Bologna,
Bologna, Italy. Email: nicola.mimmo2@unibo.it

2 The authors are with the Faculty of Engineering of the Free
University of Bozen-Bolzano, Bolzano, Italy. Email: {marco.frego,
angelika.peer}@unibz.it

model is a smooth sequence of planar clothoid curves trav-
elled with constant speed. While the existence of the IMG
is ensured in [4], finding it for a generic nonlinear system
represents a challenging task. In this respect, its application
to a clothoidal model is new and proposed here for the first
time.

II. PROBLEM FORMULATION

This section describes the elements that constitute the
studied system, formulates the problem, and offers a solution.

a) Plant: The plant herein considered is a 2D double
integrator system, whose position, velocity, and controlled
acceleration are p, v, u ∈ R2. It represents, for instance, the
model of a vehicle, whose dynamics is

ṗ = v, p(t0) = p0,

v̇ =u, v(t0) = v0,
(1)

where p0, v0 ∈ R2 denote the position and velocity at time
t = t0 ∈ R. Thanks to the form of the above equations, the
plant is modelled as a chain of integrators.

b) Reference: The reference trajectory is given by the
exogenous system w := col(r, θ, κ, σ) ∈ R5 and represents
a clothoid spline, where r ∈ R2 is the reference position, θ ∈
R denotes the reference course angle, κ ∈ R is the reference
curvature, and σ ∈ R denotes the reference sharpness,
which is piece-wise constant, since it is the derivative of the
curvature, which, in turn, for a clothoid, is a linear function.
The model that generates the spline is

ẇ =s(w), w(t0) = w0, (2)

where w0 ∈ R5 denotes the initial conditions and s(w) :=
col(cos θ, sin θ, κ, σ, 0). From w, the reference position is
extracted using the selection matrix H := [I2×2 02×3] as
r = Hw. In what follows, the property of the clothoid spline
sharpness σ to have a time interval is used. In other words,
the sharpness of the clothoid splines, which is piece-wise
constant, has jumps that are at least ∆T > 0 separated.

c) Tracking error: Having defined the plant and the
reference, it is possible to formulate and characterise the
(position) tracking error e := p− r and its derivative ė, that
are collected in the vector ξ ∈ R4,

ξ := col(ξ1, ξ2) = col(e, ė). (3)

Let ξ be the vector of the errors and their first derivative as
in (3), define q(w) as

q(w) := Hẅ = H
∂s(w)

∂w
s(w), (4)



then,
ξ̇1 = ξ2, ξ1(t0) = ξ1,0,

ξ̇2 =u− q(w), ξ2(t0) = ξ2,0.
(5)

The acceleration error is thus u − q(w), hence q(w)
represents the unknown reference acceleration that the
control u should be able to replicate, in order to keep the
error e(t) = 0 for any t ≥ t0.

d) Assumptions and hypotheses: Before stating the
tracking problem, some assumptions are required:

1) Constant speed. The reference trajectory is travelled at
a constant (unitary) speed.

2) Regularity of reference. The initial condition w0,
the reference curvature κ(t) and sharpness σ(t) are
bounded. In other words, there exist κmax > 0 and
σmax > 0 bounding ∥κ(t)∥∞ ≤ κmax and ∥σ(t)∥∞ ≤
σmax. Moreover, σ has a time interval ∆T > 0.

3) Measurable error. The tracking error e, the derivative
ė, and the speed v are measurable. The sensor suite
provides the following output:

y := col(y1, y2, y3) = col(ξ, v),

with y1, y2, y3 ∈ R2.
The first assumption does not represent a limitation of
the presented approach but rather a simplification of this
preliminary study. Indeed, given a model of the generator
of the speed profile, it is possible to extend the proposed
IMG to include it. The second assumption is reasonable for
a feasible trajectory that takes into account the minimum
turning radius (or maximum curvature) of a non-holonomic
vehicle. A similar argument holds for the regularity of the
derivative of the curvature σ. The third assumption, in line
with assumptions in [4], is added to characterise the used
hypotheses regarding the measurability of the tracking errors.

Problem 1. Consider the error vector (3), its dynamics (5)
and the Assumptions. Let ϵ > 0 be a prescribed performance
index in terms of clothoid tracking accuracy. Then, design
a control u such that the trajectories of (5) are bounded
and ∥ξ1(t)∥ ≤ ϵ for all t ≥ t⋆, for any initial conditions
(p(t0), v(t0)) ∈ S0, with S0 being a non-empty set of initial
conditions of (1), for some t⋆ ≥ t0, and for any sharpness σ
satisfying the Assumptions with sufficiently long time interval
∆T and small σmax.

III. PROPOSED SOLUTION

The first claim is that n = 3 is large enough to im-
plement an IMG that solves Problem 1. Then, introduce
η := col(η1, η2, η3) ∈ R3, and consider

α1(η, γ̂(y)) := [Sγ(η)]
⊤
γ̂(y),

γ(η) := col(cos η1, sin η1), (6)

γ̂(y) :=
y3 − y2
∥y3 − y2∥

,

with
S :=

[
0 −1
1 0

]
.

The quantity γ(η) represents the vehicle’s velocity that the
control system wants to impose, whereas γ̂(y) is the estimate
of the reference vehicle’s velocity, such that [Sγ(η)]⊤ γ̂(y)
can be thought as the velocity error. The second claim is that
the following control system solves Problem 1:

η̇ =Aη +Gα1(η, γ̂(y)), η(t0) = η0, (7a)

u =
∂γ(η)

∂η
η̇ + α2(η, y), (7b)

with A a shift matrix of dimension 3, η0 ∈ R3, α2(η, y) :=
−c2y1−c(y2+y3)+cγ(η), and with c > 0 and G ∈ R3 being
design parameters. We can now state the main theoretical
result of our study.

Theorem 1. Consider the dynamics of the tracking error (5),
the Assumptions and let ϵ > 0 be a desired performance
index. Then, there exist c⋆, t⋆,∆T ⋆, σ⋆ > 0 and G ∈ R3

such that for any c ≥ c⋆, any piece-wise constant σ with
time interval ∆T ≥ ∆T ⋆ and such that σmax < σ⋆, the
control law u, output of system (7), solves Problem 1.

IV. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

We presented preliminary results on an internal model-
based control system for the asymptotic tracking of clothoids.
An internal model generator is proposed under classic as-
sumptions about the boundedness of the reference position,
curvature, and sharpness, and the measurability of tracking
errors. It is worth noting that the approaches currently
available in the literature do not provide a solution to the
problem under consideration. Future works will focus on
removing limitations such as the need for a sharpness that
remains constant for sufficiently long periods. Moreover, also
the stability proofs will be formalised.
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Time-optimal speed planning under jerk constraints

Stefano Ardizzoni, Luca Consolini, Mattia Laurini, and Marco Locatelli∗

Consider the problem of computing a minimum-time motion of a car-like vehicle from a start
configuration to a target one, while avoiding collisions (obstacle avoidance), and satisfying kinematic,
dynamic, and mechanical constraints (for instance, on velocities, accelerations and maximal steering
angle). It is common to solve this problem in two steps. First, we use a geometric path planner to
find a suitable path. Then, we perform minimum-time speed planning on the planned path (see, for
instance, [1, 3, 4]). Clearly, this approach is sub-optimal with respect to a single-step procedure,
in which we plan the geometric path and the speed law at the same time. However, this choice
considerably simplifies the problem. In this paper, we assume that the path that joins the initial and
final configurations is assigned, and we aim at finding the time-optimal speed law that satisfies some
kinematic and dynamic constraints. The problem can be reformulated as an optimization problem,
and it is quite relevant from a practical point of view. In particular, in automated warehouses, the
speed laws of Automated Guided Vehicles (AGVs) are typically planned under acceleration and jerk
constraints. We compute a time-optimal control law, taking into account constraints on maximum
speed, tangential and lateral acceleration, and jerk. We propose a convex relaxation of the original
nonconvex problem, where nonconvexity is due to the jerk constraints (see [2]). We reformulate
the relaxed problem as a second order cone programming (SOCP) problem. This allows solving
the problem very efficiently with modern solvers. We consider the following problem, which is the
discretized version of the previously described speed planning problem.

min
w∈Rn

n−1∑
i=2

h
√
wi

where w is the squared speed, h is the time step and w is subject to the following constraints

w1 = wn = 0 (1)

0 ≤ wi ≤ wmax
i i = 2, . . . , n− 1, (2)

wi+1 − wi ≤ hA, i = 1, . . . , n− 1, (3)

wi − wi+1 ≤ hA, i = 1, . . . , n− 1, (4)

(wi−1 − 2wi + wi+1)
√
wi ≤ h2J, i = 2, . . . , n− 1, (5)

− (wi−1 − 2wi + wi+1)
√
wi ≤ h2J, i = 2, . . . , n− 1, (6)

where: constraints (1) are the initial and final interpolation conditions; wmax and A, are bounds
for speed and acceleration, imposed through constraints (2), and (3), (4), respectively, and con-
straints (5) and (6) impose a bound on the time derivative of the acceleration (also called “jerk”).
By adding variables ti, i = 2, . . . , n− 1, and setting, for each i = 2, . . . , n− 1:

ti =
h

√
wi

, ∆wi =
wi−1 − 2wi + wi+1

hJ
, (7)

we can relax the problem into a convex one by replacing the equality constraints with inequalities

∗All authors are with the Dipartimento di Ingegneria e Architettura, Università degli Studi di Parma, Parco
Area delle Scienze, 181/A, 43124 Parma, Italy. E-mails: {stefano.ardizzoni, luca.consolini, mattia.laurini,
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ti ≥ h√
wi
. We end up with the following convex problem

min
w,t

n−1∑
i=2

ti

w1 = wn = 0
0 ≤ wi ≤ wmax

i i = 1, . . . , n.
ti ≥ ∆wi i = 2, . . . , n− 1
ti ≥ −∆wi i = 2, . . . , n− 1

ti ≥ h√
wi

i = 2, . . . , n− 1

wi+1 − wi ≤ Ah i = 2, . . . , n− 1
wi − wi+1 ≤ Ah i = 2, . . . , n− 1

(8)

In spite of many attempts to give a formal proof that the relaxed problem is exact, up to now
we have not been able to derive this fact, although we conjecture that this is the case. However,
we prove that any feasible solution w of the original problem, induces a feasible solution (w, t) with
ti = h√

wi
of the relaxation (8). As a consequence, if the optimal solution (w⋆, t⋆) of the convex

relaxation (8) is such that w⋆ is feasible for the original one, then w⋆ is also optimal for it, and the
convex relaxation has the same optimal value of the original problem. This motivates the following
algorithm for solving our problem. First, we solve convex relaxation (8) as a second-order cone
program (SOCP). Then, to complete the algorithm, in case w⋆ is not feasible, we use (w⋆, t⋆) as the
starting condition for a generic nonconvex solver. Note that we cannot remove the last step since we
do not have a formal proof of the exactness of the problem. Moreover, it is necessary if we consider
a generalization of our problem, in which constraint parameters A, J vary with step i. Indeed, the
conjecture turns out to be false as soon as we extend the class of problems, in particular, by allowing
different bounds for the jerk along the trajectory. It has also been shown that the convex relaxation
can be rewritten as a SOCP problem. This has a relevant practical impact, since solvers for SOCP
problems are quite efficient and allow solving large instances within tenths of a second.

As a possible topic for future research, we are interested in evaluating the performance of the
proposed approach to robotic manipulators. These problems can be reformulated in a way similar
to the problems addressed in this paper. We do not expect to be able to extend our conjecture to
such problems, but we do expect that, even in cases where the convex relaxation is not exact, the
final solution returned by the proposed solution algorithm has a small percentage gap with respect
to the optimal one.
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A Lasso approach to secure state estimation for cyber-physical systems

V. Cerone S. M. Fosson D. Regruto F. Ripa

Abstract— The development of algorithms for secure state
estimation in vulnerable cyber-physical systems has been gain-
ing attention in the last years. A consolidated assumption is
that an adversary can tamper a relatively small number of
sensors. In this paper, we propose a Lasso-based approach and
we analyse its effectiveness. We theoretically derive conditions
that guarantee successful attack/state recovery and we develop
a sparse state observer. We compare the proposed methods to
the state-of-the-art algorithm via numerical simulations.

I. INTRODUCTION

A cyber-physical system (CPS) is a collection of com-
puting devices that interact with the physical world, through
sensors and actuators, and with one another, through commu-
nication networks. Applications of the CPS paradigm include
industrial control processes, smart power grids, wireless
sensor networks, electric ground vehicles and cooperative
driving technologies. A relevant research line considers the
problem of secure state estimation (SSE) for CPSs in the
presence of sensor attacks, that inject false data to manipulate
the measurements. We expect that an adversary conceives
an unpredictable intrusion, that is, we have no information
on its dynamics. The unique realistic assumption on sensor
attacks is sparsity: only a relatively small number of sensors
is accessible, due to, e.g., large dimensionality and physical
deployment of CPSs.

The identification of the attack support, i.e., the subset
of tampered sensors, is a combinatorial problem that does
not scale well for large dimensional systems. By leveraging
the sparsity assumption, one can exploit ℓ1-based sparsity-
promoting decoders to recast the problem into constrained
convex optimization; see, e.g., [1], [2]. Since these ap-
proaches are still computationally intense, [3] introduces a
faster event-triggered projected gradient (ETPG) approach,
whose structure is prone to recursive SSE. The provided
sufficient conditions for the convergence of ETPG are quite
restrictive. The work [4] addresses this issue by a satisfiabil-
ity modulo theory approach, called Imhotep-SMT, which is
suitable for small/medium dimensional problems.

In this work, we propose a Lasso approach, see [5], to
SSE of CPSs under sparse sensor attacks and we analyse
its effectiveness. Moreover, we design a sparsity-promoting
Luenberger-like observer by starting from the iterative soft
thresholding algorithm for Lasso and we propose some
numerical results.

∗ The authors are with the Dipartimento di Automatica e Informatica,
Politecnico di Torino, corso Duca degli Abruzzi 24, 10129 Torino, Italy;
e-mail: sophie.fosson@polito.it. This work is part of the project NODES
which has received funding from the MUR – M4C2 1.5 of PNRR with
grant agreement no. ECS00000036.

II. PROBLEM STATEMENT

As in [1], [3], we consider CPSs that can be modeled as

x(k + 1) = Ax(k)

y(k) = Cx(k) + a(k)
(1)

where x(k) ∈ Rn is the state, y(k) ∈ Rp is the measurement
vector, a(k) ∈ Rp is the attack vector. We assume that each
sensor i takes a measurement yi(k) ∈ R. If ai(k) ̸= 0, sensor
i is under attack. The SSE problem is as follows.

Problem 1: For some τ ≤ n and k ≥ τ − 1 given A,
C and y = (y(k − τ + 1)⊤, . . . , y(k)⊤)⊤ ∈ Rpτ , estimate
x(k − τ + 1) in the presence of sparse sensor attacks.

Let us denote ã = (a(k − τ + 1)⊤, . . . , a(k)⊤)⊤ ∈ Rpτ

and x̃ = x(k − τ + 1) ∈ Rn, while I ∈ {0, 1}pτ,pτ is the
identity matrix. We have y =

(
O I

) (
x̃⊤ ã⊤

)⊤
where

O =
(
C⊤ (CA)⊤ · · · (CAτ−1)⊤

)⊤ ∈ Rpτ,n. If τ =
n, O is the observability matrix of the attack-free system;
we assume rank(O) = n.

III. LASSO APPROACH

By taking into account the sparsity of ã, we propose the
following Lasso formulation for Problem 1:

(x⋆, a⋆) = argmin
x∈Rn,a∈Rpτ

1

2
∥y −Ox− a∥22 + λ∥a∥1 (2)

where λ > 0. An interesting feature of classic Lasso is
that there is a tight condition, denoted as “irrepresentable”,
that guarantees the recovery of the correct support; see, e.g.,
[6]. In this work, we perform an irrepresentable condition
analysis for (2), by taking into account the structure of the
“sensing matrix”

(
O I

)
and the ℓ1 regularization applied

only to variables a.
In the following, S is the support of ã and S̄ is its

complementary set. OS ∈ Rh,n and OS̄ ∈ Rpτ−h,n are the
submatrices of O with rows in S and in S̄, respectively.
Finally, we denote by ∥ · ∥∞ the ℓ∞ matrix norm.The
following result holds.

Theorem 1: Let us assume that
(
O IS

)
∈ Rpτ,n+h is

full rank. Lasso is successful, i.e., by solving it we identify
the attack support, if

∥∥∥O†⊤
S̄ O⊤

S

∥∥∥
∞

< 1 where O†⊤
S̄ is the

right pseudo-inverse of O⊤
S̄ .

A qualitative interpretation of this result is that the rows
of OS must be “sufficiently orthogonal” to the columns of
O†

S̄ . We refer the reader to [7] for the proof of the theorem
and extedend considerations.

IV. SPARSE SOFT OBSERVER FOR ONLINE SSE
In this section, we move towards recursive, online SSE.

We consider Problem 1 in a dynamic perspective: we aim at



Fig. 1. Lasso vs ETPG vs Imhotep-SMT, n = 20, s = p/5 sensors under
attack. The measurements are either noise-free and with noise bound 10−4.
The results are averaged over 50 runs.

estimating the current state, or a delayed version, using the
last pτ measurements. If τ = 1, this an online (not delayed)
SSE. This calls for fast recursive online algorithms.

In [3], the authors address this problem by developing
a recursive version of ETPG, named ETPL. As an alter-
native, we develop an online version of the iterative soft
thresholding algorithm (ISTA, [8]), that we name sparse
soft observer, summarized in Alg. 1. We use the following
notation: a(k) = (a(k − τ + 1)⊤, . . . , a(k)⊤)⊤, y(k) =
(y(k − τ + 1)⊤, . . . , y(k)⊤)⊤.

Algorithm 1 Sparse soft observer
1: for all k = τ − 1, τ, . . . do
2: Measurements and estimated measurements update

y(k) = Ox(k − τ + 1) + a(k)

ŷ(k) = Ox̂(k) + â(k)
(3)

3: ISTA step: gradient step + soft thresholding(
x̂+

â+

)
=

(
x̂(k)
â(k)

)
− ν (O I)

⊤
[ŷ(k)− y(k)] (4)

â(k + 1) = Sνλ
[
â+

]
(5)

4: State update
x̂(k + 1) = Ax̂+ (6)

5: end for

V. NUMERICAL RESULTS

A. Lasso approach

We test the proposed Lasso approach on random, synthetic
CPSs and we compare it to ETPG by [3] and Imhotep-SMT
by [4]. We assume that the attack support is time-invariant
with cardinality s. The attacks have magnitude in [4, 5],
which is sufficiently large to sabotage the state estimation,
but not enough large to produce clear, plainly detectable
outliers in the measurements. We assess the accuracy in terms
of state estimation error ∥x̂− x̃∥2/∥x̃∥2.

In Fig. 1, we see that Lasso outperforms ETPG both in
accuracy and run time. Since we consider small/medium
dimensions, Imhotep-SMT is the best approach to achieve
the exact solution in fast time, in the noise-free case; never-
theless, it is not robust to noise. In contrast, Lasso and ETPG
are robust to small noise.

Fig. 2. Sparse soft observer vs ETPL; n = 10, p = 15, s = 3, τ = 1.
The results are averaged over 100 runs.

B. Sparse soft observer

We test the proposed sparse soft observer for recursive and
online SSE and we compare it to ETPL [3]. We consider
th state estimation error ∥x̂ − x̃∥2/∥x̃∥2 and support error,
defined as In Fig. 2 the corresponding state estimation error
and support error

∑
j |1(âj ̸= 0)−1(ãj ̸= 0)|, where 1(v) =

1 if v is true and 0 otherwise. The sparse soft observer is
more accurate and ETPL does not always converge to the
right support. The execution times are 7 · 10−5 seconds for
ETPL and 4 · 10−6 seconds for the sparse soft observer.

VI. CONCLUSIONS

We propose a Lasso approach for secure state estimation
in cyber-physical systems under sparse sensor attacks. We
analyse the properties of Lasso to identify the attack and, as
a consequence, to recover the state. Furthermore, by starting
from the iterative soft thresholding algorithm for Lasso, we
develop a sparse soft observer to perform online estimation.
Through numerical results, we show that the proposed Lasso
approach is valuable with respect to state-of-the-art methods,
although it exploits less information, e.g., on the sparsity
pattern.
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Negativizability: a Useful Property for Distributed State Estimation
and Control in Cyber-Physical Systems

Camilla Fioravanti1, Stefano Panzieri2, and Gabriele Oliva1

Abstract— This submission aims to present an interesting
property of linear and time-invariant systems, namely neg-
ativizability: a pair (A,C) is negativizable if a gain matrix
K exists such that A − KC is negative definite. Leveraging
this property, we propose a novel fully distributed estimation
and control scheme that allows each agent to locally perform
the computation of its estimation and control gain matrices.
Notably, unlike other methodologies in the literature, our
approach considers an interdependent setting that is natively
integrable with the interconnected structure of cyber-physical
systems. To conclude, we extended the proposed methodology
to address the distributed estimation problem in the case of
nonlinear systems.

Index Terms— Cyber-Physical Systems, Distributed State Es-
timation, Multi-Agent Systems, Nonlinear Systems.

I. INTRODUCTION

In recent years, distributed state estimation has emerged
as a focal point of research and application in multi-agent
and Cyber-Physical Systems (CPSs) [1], where the main
goal is to estimate the state of the system by building local
observers that rely on partial measurements and neighbors’
estimations [2], [3]. In this context, definite matrices often
play a fundamental role as they are, for instance, pivotal for
Lyapunov stability analysis of linear systems. Large attention
has been also paid to the problem of designing adequate
gains [4], [5] that guarantee that closed-loop dynamical
matrices become Hurwitz (at continuous time) or Schur
(at discrete time). However, to the best of our knowledge,
the problem of designing gains ensuring that closed-loop
dynamical matrices become negative definite has not been
considered. Moreover, recent approaches in the literature all
consider the analysis of the full dynamical system as a mono-
lithic entity, partially measured by a set of distributed sensors
that collectively aim to obtain the state estimation of the
entire system. This framework, in addition to requiring the
agents to have global knowledge of information concerning
the system, e.g., the entire dynamics, is often inefficient and
implausible in a distributed context like a CPS.

In this submission, we aim to fill this gap by exploiting the
negativizability property, that we characterize in [6] provid-
ing a necessary and sufficient condition for the related prob-
lem to be solvable, and investigating the relation between
negativizability, observability, and detectability. Moreover,
by resorting to a generalization of the Gershgorin Circle

1Department of Engineering, University Campus Bio-Medico of Rome,
Via Alvaro del Portillo, 21 - 00128 Roma, Italy. E-mails: {c.fioravanti,
g.oliva}@unicampus.it.
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Criterion to the case of block-partitioned non-symmetric
matrices [7], we show how negativizability can be the basis
for a distributed state estimation and control schemes. Most
notably, such schemes allow the agents to find gains by only
relying on information that is locally available at each agent.
Interestingly, the proposed scheme can be applied to directed
graphs and allows the modification of the gains by a single
agent in the case there is a local change in the dynamics.
Moreover, as we show in [8], the proposed methodology
applies to the case of nonlinear systems.

II. THE NEGATIVIZABILITY PROPERTY

In [6] we introduce a formal definition of negativizability.
Definition 1 (Negativizable pair): A pair (A,C) with

A ∈ Rn×n and C ∈ Rq×n is negativizable if there is a
K ∈ Rn×q such that A−KC is negative definite.
The definition is followed by the related problem.

Problem 1 (Negativizability Problem): Let A ∈ Rn×n

and C ∈ Rq×n be given. Find K ∈ Rn×q such that A−KC
is negative definite.
In this section, we aim to investigate when a pair (A,C) is
negativizable and, when a solution exists, to provide a viable
mechanism to solve the corresponding problem. Notice that,
since A − KC is not symmetric in general; therefore, the
matrix K we are looking for must be such that

KC + CTKT − (A+AT ) ≻ 0.

In order to characterize a condition for the negativizability
problem to be solvable, it is convenient to equivalently
reformulate the problem as follows.

Proposition 1: Let A ∈ Rn×n and C ∈ Rq×n be given,
and let us define

ξ =
[
K11 . . . K1q . . . Kn1 . . . Knq

]T
.

The negativizability problem for the pair (A,C) is equivalent
to finding ξ ∈ Rnq such that

∑nq
i=1 ξiFi − F0 ≻ 0, with

F0 = A+AT

F(u−1)q+v = eurowv(C) + rowT
v (C)eTu

(1)

for all u ∈ {1, . . . , n} and all v ∈ {1, . . . , q}; notice that eu
is the u-th vector in the canonical basis of Rn and rowv(C)
is the v-th row of C.
The main advantage of the above equivalent formulation of
the negativizability problem is that it amounts to a Definite
Programming (DP) feasibility problem; a necessary and suf-
ficient feasibility condition exists for this class of problems,
namely, the semidefinite version of the Farkas Lemma.



Corollary 1: The negativizability problem is feasible if
and only if no Y ∈ Rn×n exists such that:

i)Y ̸= 0; ii)Y = Y T ; iii)Y ⪰ 0;

iv)C(Y + diag(Y )) = 0q×n; v)trace((A+AT )Y ) ≥ 0.
Notice that, under the assumption that (A,C) is negativiz-
able, a viable way to numerically address the negativizability
problem, up to a tolerance factor 0 < ϵ ≪ 1, is to resort to a
Semidefinite Programming (SDP) formulation, i.e., to solve
the following optimization problem.

min
ξ∈Rnq

cT ξ s.t.
nq∑
i=1

ξiFi − F0 − ϵIn ⪰ 0, (2)

where F0, . . . , Fnq are defined in Eq. (1). Since we are
interested in a feasible solution, we can assume c = 0nq .

The next remark highlights that the problem at hand can
be easily cast in a form that is useful for control.

Remark 1: Given matrices A ∈ Rn×n and B ∈ Rn×q , by
definition a matrix K exists such that A − BK ≺ 0 if and
only if the pair (AT , BT ) is negativizable.

III. DISTRIBUTED ESTIMATION FOR CPSS

Let us consider a cyber-physical system composed of
N interdependent subsystems, which interact both at the
physical and cyber level according to a graph topology
G = {V,E}, in general directed, which is assumed to be
the same for both layers. In particular, let us assume that the
physical layer of the i-th subsystem is represented by the
following dynamics{

ẋi(t) = Aiixi(t) +
∑

j∈N in
i
Aijxj(t) +Biui(t),

yi(t) = Cixi(t),

where Aii ∈ Rni×ni , Aij ∈ Rni×nj , Bi ∈ Rni×pi and
Ci ∈ Rqi×ni . In this view, within the physical layer, an edge
(vj , vi) exists whenever the i-th subsystem is influenced by
the j-th one. Regarding the cyber layer, we assume that each
subsystem j acts as an agent and can transmit information to
an agent i if there is an edge (vj , vi) in the graph. Moreover,
we assume each agent knows only local information about
the system, i.e., Aii, Bi, Ci, as well as Aij for all its in-
neighbors j ∈ N in

i .
Let us now consider a scenario where each agent aims at

estimating its own state vector via a distributed Luenberger-
type observer, i.e.,

żi(t) = Aiizi(t)+
∑

j∈N in
i

Aijzj(t)+Biui(t)+Ki(yi(t)−Cizi(t)),

where Ki ∈ Rni×qi . We define the estimation error for the
i-th agent as ei(t) = xi(t) − zi(t) ∈ Rni and consider the
following assumption.

Assumption 1: For each subsystem i ∈ {1, . . . , N} the
pair Aii +

∑
j ̸=i

∥Aij∥Ini
+βIni

, Ci

 (3)

is negativizable for some β > 0.

We now show that the state estimation problem amounts to
solving N local negativizability problems.

Theorem 1: Let Assumption 1 hold and let K̂i ∈ Rni×qi

be a matrix that solves the negativizability problem for the i-
th pair in Eq. (3). Then, choosing Ki = K̂i for all agents i ∈
1, . . . , N , the estimation error reaches zero asymptotically.
Notice that G is in general directed and, interestingly, this
simple scheme works also in this case, as it requires each
agent i to receive the estimated state zj(t) from all its in-
neighbors. A few remarks are now in order.

Remark 2: Given the local nature of the negativizability
problems required for the above state estimation application,
we observe that the agents are either able to solve their own
problem or to decide that the problem admits no solution.

1) Extension to Nonlinear Systems: In [8], we show that
the proposed protocol can be applied to the case of nonlinear
state estimation, with the following dynamics{

ẋi(t) = Aiixi(t) +
∑

j∈N in
i
Aijxj(t) + fi(xi(t), t),

yi(t) = Cixi(t),

where xi(t) is the stack of the vectors xj(t) ∈ Rnj

corresponding to all agents j ∈ N in
i ∪ {i}, and we suppose

fi(xi(t), t) is Lipschitz in its first argument in all Rn and
is known to the i−th agent. Moreover, we propose a novel
fully distributed algorithm to estimate an upper bound on
the Lipschitz constant, needed to perform the estimation,
which is based on knowledge of the local constants ℓi that
are experienced at each subsystem.

Theorem 2: Suppose for all t ≥ 0, the overall nonlin-
ear function f(x, t) is Lipschitz (in its first argument) in
(−γ, γ)n, i.e., in the open hypercube in Rn with side 2γ,
centered in the origin. Finally, for all t ≥ 0 and all x ∈
(−γ, γ)n, the Lipschitz constant ℓ of the overall nonlinear
function f(x(t), t) is upper-bounded by

ℓ ≤

√(
max

i=1,...,N
{|N out

i |}+ 1

)
max

i=1,...,N
{ℓ2i }.
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Data-driven delay estimation in reaction-diffusion systems

Rami Katz1, Giulia Giordano1 and Dmitry Batenkov2

Abstract— For a reaction-diffusion equation with unknown
right-hand side and non-local measurements subject to un-
known constant measurement delay, we consider the nonlinear
inverse problem of estimating the associated leading eigenval-
ues and measurement delay from a finite number of noisy
measurements. We propose a reconstruction criterion and, for
small enough noise intensity, prove existence and uniqueness of
the desired approximation and derive closed-form expressions
for the first-order condition numbers, as well as bounds for
their asymptotic behavior in a regime when the number of
measurements tends to infinity and the inter-sampling interval
length is fixed. We present numerical simulations indicating
that the exponential fitting algorithm ESPRIT is first-order
optimal, namely, its first-order condition numbers have the
same asymptotic behavior as the analytic ones in this regime.

I. INTRODUCTION AND PROBLEM STATEMENT

Reaction-diffusion equations (RDEs) are widely used to
model phenomena in physics and engineering. Almost all
existing control and observation techniques for RDEs assume
explicit knowledge of the spatial operator of the system or
of the eigenvalue/eigenfunction pairs corresponding to its
modes; however, their identification is a challenging problem,
and realistic, constructive and implementable data-driven
identification techniques for RDEs are still missing. Here,
we consider the 1D RDE with unknown right-hand side

zt(x, t) = (p(x)zx(x, t))x +q(x)z(x, t), (1)

where x ∈ (0,1), z(x, t) ∈ R, z(0, t) = z(1, t) = 0, and the
unknown smooth functions p,q : [0,1] → R in (1) satisfy
the bounds 0 < p ≤ p(x) ≤ p < ∞ and q ≤ q(x) ≤ q, with
unknown constants. The spatial operator in (1) has an infinite
monotone sequence of simple eigenvalues {λn}∞

n=1 satisfy-
ing limn→∞ λn = ∞ [1]. The eigenvectors {ψn}∞

n=1 form a
complete orthonormal system in L2(0,1). We subsequently
denote [n] = {i ∈ N ; 1 ≤ i ≤ n}.

We consider non-local measurements

y(t) =
∫ 1

0
c(x)z(x, t −D)dx ∈ R, t ≥ 0, (2)

where the unknown constant measurement delay has a known
bounds, 0 < D < Dmax, while the kernel c ∈ L2(0,1) has
coefficients {cn}∞

n=1 satisfying the following assumption.
Assumption 1: There exist N1,N2 ∈ N such that

(a) cn = 0 for all n > N1 +N2,
(b) cn are known and nonzero for n ∈ [N1],
(c) ck = ε c̃k ∀k ∈ [N1 +N2]\ [N1], where for some Mc > 0

|c̃k| ≤ Mc|cn|, ∀n ∈ [N1] and ∀k ∈ [N1 +N2]\ [N1]. ⋄
Hence, c ∈ L2(0,1) is a bandlimited measurement kernel,
supported on {ψn}N1+N2

n=1 , with known and nonzero projection
coefficients on {ψn}N1

n=1. Also, the projection coefficients on

1 Department of Industrial Engineering, University of Trento.
2 Department of Applied Mathematics, Tel Aviv University, Israel.

{ψn}N2
n=N1+1 are small in comparison to those on {ψn}N1

n=1:
the measurement kernel c includes a main lobe on the
frequency domain {λn}N1

n=1 and a structured noise with small
intensity ε > 0 on the frequency domain {λn}N2

n=N1+1, which
emanates from measuring ‘undesirable’ system modes.

We set z(·, t) = z(·,0), t < 0. Employing modal decompo-
sition [2], we present the solution to system (1) as

z(x, t) =
∞

∑
n=1

zn(t)ψn(x), zn(t) = ⟨z(·, t),ψn⟩ , n ∈ N. (3)

Assumption 2: For z(·,0) ∈ L2(0,1), zn(0) ̸= 0 is known
for n∈ [N1]. Furthermore, |zk(0)|/|zn(0)| ≤Mz for some Mz >
0, all n ∈ [N1] and all k ∈ [N1 +N2]\ [N1]. ⋄

Differentiating under the integral sign in (3) and inte-
grating by parts, we have żn(t) = −λnzn(t) =⇒ zn(t) =
e−λntzn(0), ∀n ∈ N. Substituting the latter into (2), for t ≥
Dmax we obtain

y(t) =
∞

∑
n=1

cnzn(0)eλnDe−λnt , cn = ⟨c,ψn⟩ , n ∈ N. (4)

Our goal is to estimate the delay D and a finite number
of dominant modes λn, based on noisy “snapshots” of the
system output taken at finitely many uniformly distributed
time steps with arbitrary inter-sampling period length.

Assumption 3: The system measurements are taken only
at times {tk := k∆+Dmax}2N1−1

k=0 , with step-size ∆ > 0. ⋄
Subject to Assumptions 1-3, the measurements (4) at the

available times {tk}2N1−1
k=0 can be presented as

y(tk) =
N1

∑
n=1

yne−λnk∆ + ε

N1+N2

∑
n=N1+1

yne−λnk∆, (5)

for k = 0, . . . ,2N1 −1, where

yn :=

{
cnzn(0)eλn(D−Dmax), n ∈ [N1]

c̃nzn(0)eλn(D−Dmax), n ∈ [N1 +N2]\ [N1]
(6)

satisfy |yk|/|yn| ≤ McMz =: My, ∀n ∈ [N1],k ∈ [N1 +N2] \
[N1], since D<Dmax ⇒ e(λk−λn)(D−Dmax) < 1 for such indices.

Objective: Given the measurements (5) and N0 ∈ [N1],
estimate the eigenvalues {λn}N0

n=1 and the constant delay D.
The equivalent problem of recovering {yn,λn}N1

n=1 from the
measurements (5) is known as exponential fitting [3], [4].
For ε = 0, we can recover {yn,λn}N1

n=1 exactly. If ε > 0, the
structured measurement noise introduces estimation errors.
Here we study the analytic estimation errors due to noise,
to first order in ε , and show that the ESPRIT algorithm is
first-order optimal in achieving the identification objective,
thereby gaining insight into the system (1).

The considered problem is highly challenging because (i)
only finitely many measurements are available for the recon-
struction procedure, for any triplet (∆,N1,N2); (ii) although



(1) is a linear system, the task of recovering {D,λn}N0
n=1 from

the measurements (5) is a nonlinear inverse problem, as the
measurements depend nonlinearly on these parameters.

Our main results are the following. We define a recon-
struction criterion, and prove existence and uniqueness of the
associated approximation, if the intensity ε of the structured
noise is not too large. We introduce first-order condition
numbers describing how the ε-noise is amplified in the
reconstruction errors, and show their asymptotic behavior in
a specific parameter regime. In the considered regime, we
show that the approximation numerically computed via the
ESPRIT algorithm [5] is first-order optimal: its first-order
condition numbers exhibit the same asymptotic behaviour as
the analytic ones. A complete version of this work, including
all the proofs and preliminary results, can be found in [6].

II. MAIN RESULTS

Given (5), we introduce the map

F

({
ŷn, λ̂n

}N1

n=1
;ε

)
= col

{
N1

∑
n=1

ŷne−λ̂nk∆ − y(tk)

}2N1−1

k=0

. (7)

For the approximation candidate P̂ :=
{

ŷn, λ̂n

}N1

n=1
,

function F (P̂;ε) returns the discrepancy between
measurements {y(tk)}2N1−1

k=0 and “virtual measurements”{
∑

N1
n=1 ŷne−λ̂nk∆

}2N1−1

k=0
. We look for estimates P̂ that

maintain the equality F (P̂;ε) = 0 even with ε > 0. Given
P̂, D̂(n) = log

(
ŷn(cnzn(0)e−λ̂nDmax)−1

)
/λ̂n can then be used

as an approximation of D, provided there is n for which
ŷn(cnzn(0)e−λ̂nDmax)−1 is positive.

To keep the presentation simpler, we assume N2 = 1, but
our results remain identical for an arbitrary fixed N2 ∈N. Set-
ting φn := e−λn∆, φ̂n = e−λ̂n∆, n ∈ [N1+1], the measurements
in (5) can then be rewritten as

y(tk) =
N1

∑
n=1

ynφ
k
n + ε yN1+1 φ

k
N1+1, k ∈ {0}∪ [2N1 −1]. (8)

Theorem 1: ∃ε∗ > 0 and unique C1 functions P̂(ε) :={
ŷn(ε), λ̂n(ε)

}
s.t P̂(0) = {yn,λn}N1

n=1 and ∀|ε| < ε∗,

F (P̂;ε) = 0 ⇐⇒ P̂ = P̂(ε). P̂(ε) satisfies, as ε → 0,

ξ̂n(ε)−ξn = Kξ (n;N1,∆)ε +on,N1,∆(ε), ξ ∈ {λ ,y} ,[
Ky(n;N1,∆)
Kλ (n;N1,∆)

]
= yN1+1

[
HΦ,n(φN1+1)

− 1
∆ynφn

H̃Φ,n(φN1+1)

]
, n ∈ [N1],

(9)
where HΦ,n(z) =

[
1−2(z−φn)L′

Φ,n(φn)
]

L2
Φ,n(z) and

H̃Φ,n(z) = (z − φn)L2
Φ,n(z), with LΦ,n(z) = ∏ j ̸=n

z−φ j
φn−φ j

,
n ∈ [S], are the Hermite interpolation basis polynomials
associated with Φ = {φn}N1

n=1.
The terms Ky(n;N1,∆) and Kλ (n;N1,∆), n ∈ [N1] are the
first order (in ε) condition numbers of the problem. Hence-
forth, we will suppress their dependence on N1,∆ for brevity.

Theorem 1 implies that an ε-perturbation in the measure-
ments is amplified in the reconstruction errors ε−1eξ (n) :=
ε−1(ξ̂n(ε)−ξn), ξ ∈ {λ ,y} (see (9)) by the condition num-
bers Ky(n) and Kλ (n), when seeking for P̂.

We consider the asymptotic analysis of Ky(n) and
Kλ (n), of which we wish to determine the dependence on
N1 and ∆. We focus on the

Regime: ∆ fixed and N1 → ∞ (10)

corresponding to growing support of the kernel c ∈ L2(0,1)
in the frequency domain, subject to Assumption 1.

Theorem 2: Recall the first-order condition numbers
Kλ (n) and Ky(n) in (9). Let n ∈N. Given ∆ > 0, there exist
some γy(n,∆)> 0 and γλ (n,∆)> 0 such that, as N1 → ∞,∣∣Ky(n)

∣∣≤ γy(n,∆) · |zN1+1(0)c̃N1+1|e−
2
3 ∆υN3

1 (1+O(N−1
1 )),

|Kλ (n)| ≤ γλ (n,∆) · e−
2
3 ∆υN3

1 (1+O(N−2
1 )). ⋄

III. NUMERICAL EXAMPLE: PDE DELAY ESTIMATION

We consider (1) with constant p ≡ q ≡ 0.1, eigenvalues
λn = n2π2 −q and eigenfunctions ψn(x) =

√
2sin(nπx). The

initial condition satisfies zn(0) = (−1)n+1/(
√

2n3). Numeri-
cal simulations show that the first-order condition numbers
of the ESPRIT algorithm [5] exhibit the same asymptotic
behaviour as Kλ (n) and Ky(n) in the regime (10). We
consider (2) with delay D = 1/12 and sampling step size
∆ = 1/25; Dmax = 1/10, for each 1 ≤ N1 ≤ 10. The kernel c
is chosen according to Assumption 1 with random cn ∈ [1,2]
and ε = 0.01. The measurement (2) is computed and sampled
at the points tk = Dmax +k∆, for 0 ≤ k ≤ 2N1 −1, giving the
measurements col{y(tk)}2N1−1

k=0 defined by (5). We apply the
ESPRIT algorithm to col{y(tk)}2N1−1

k=0 and recover {λ̂ ESP
n }N1

n=1
directly. Then, since cn,zn(0),Dmax are known, we can re-
cover the approximation to D from the coefficients ŷESP

n as

D ≈ D̂(1)
ESP := log

(
ŷESP

1

(
c1z1(0)e−λ̂ ESP

1 Dmax
)−1

)
/λ̂ ESP

1 . The

errors |λ̂ ESP
1 −λ1| and |D̂(1)

ESP −D| are shown in Fig. 1.
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Fig. 1: Errors in λ1 and the estimated delay.
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1 Introduction

Due to the continuously increasing data volumes from simula-
tion, control, and experimental measurements the study of large-
scale systems became a prominent research area in systems and
control theory [1]. Hence, to reduce the computational com-
plexity of numerical simulations and facilitate the design of con-
trollers, interpolatory model reduction methods aim to construct
a reduced-order model that interpolates the transfer function of
the large-scale model at selected interpolation points. Moment
matching techniques, which fall under the category of interpo-
latory methods, are numerically reliable as they can be simply
implemented by means of Krylov projectors to achieve interpola-
tion without the need to explicitly evaluate the transfer function.
This technique involves matching the moments of an underlying
system with an interpolant, potentially of lower order.

The notion of moment matching has been redefined in the
time domain for linear and nonlinear systems [2]. In the time-
domain analysis, assuming that a steady-state response exists,
the concept of moment involves studying the output response
of the underlying system driven by a signal generator defined
by the desired interpolation points. However, with the increas-
ing availability of high-dimensional data and advancements in
computational power, data-driven model reduction has gained
significant attention in recent years. In the moment matching
framework, the problem of estimating the moment of an un-
known system from input-output data was earlier considered
in [3] employing the ordinary least squares approach. Yet, ordi-
nary least-squares arguments undergo ill-conditioned optimiza-
tion problems. Specifically, when the number of variables ex-
ceeds the number of observations the problem eventually leads
to an infinite number of solutions. Further, the presence of noisy
data in datasets may also impact the estimation of a meaningful
moment of the unknown system.

Here, we are presenting our recent results [4] where we con-
sidered the problem of estimating the moment of a nonlinear
Multi-Input Multi-Output (MIMO) system with feedthrough.
Specifically, given noisy data obtained by measuring the output
of a certain system we construct a data-driven moment match-
ing method which employs Tikhonov regularization in the Re-
producing Kernel Hilbert Spaces (RKHSs), see [5]. We estimate
the moment function from a Hilbert space according to a data
adherence criterion expressed using a regularized optimization
problem composed of two terms: the empirical cost risk and a
regularization term. Hence, taking advantage of the regularized

term the optimization problem introduces further constraints
which render the solution always uniquely determined.

2 Moment Matching
Consider a MIMO continuous-time nonlinear dynamical system
of order nx ∈ N with nu ∈ N inputs and ny ∈ N outputs de-
scribed by equations of the form

ẋ(t) = f(x(t), u(t)), x(0) = x0, (1a)
y(t) = h(x(t), u(t)), (1b)

with x(t) ∈ Rnx , u(t) ∈ Rnu , y(t) ∈ Rny , x0 ∈ Rnx and smooth
mappings f : Rnx × Rnu → Rnx and h : Rnx × Rnu → Rny

such that f(0, 0) = 0 and h(0, 0) = 0. Furthermore, we as-
sume that (1) is locally observable, locally accessible and locally
exponentially stable around the origin.

To define the notion of moment for system (1) we consider a
signal generator described by equations of the form

ω̇(t) = s(ω(t)), ω(0) = ω0, (2a)
u(t) = ℓ(ω(t)), (2b)

in which ω(t) ∈ Ω and u(t) ∈ Rnu , with Ω ⊂ Rnω a sufficiently
small open, connected, invariant neighborhood containing the
origin, whereas the smooth mappings s : Ω → Rnω and ℓ : Ω →
Rnu are such that s(0) = 0 and ℓ(0) = 0, respectively. Moreover,
we assume that (2) is locally observable and neutrally stable.
Before introducing the notion of moment for nonlinear systems,
we make the following assumption.

Assumption 1. There exists a mapping π : Ω → Rnx with
π(0) = 0, locally defined in Ω, which is the unique solution of
the partial differential equation

∂π

∂ω
(ω) s(ω) = f

(
π(ω), ℓ(ω)

)
. (3)

Definition 1 (Moment). Consider system (1) and the signal
generator (2). The moment of system (1) at (s, ℓ) is defined as
h(π(·), ℓ(·)) where π is the unique solution of the partial differ-
ential equation (3).

The notion of time-domain moment for nonlinear systems has
been defined in [2] in terms of the steady-state response of the
cascade interconnection of system (1) with the signal genera-
tor (2) as represented in Fig. 1.

1



Theorem 1 (See [2]). Consider system (1) and the signal gen-
erator (2). Suppose Assumption 1 hold. Then the moment of
system (1) at (s, ℓ) is in a one-to-one relation with the steady-
state response of the output y of the interconnected system.
Definition 2 (Moment Matching [2]). A system described by
equations

ξ̇(t) = f̄(ξ(t), u(t)), ξ(0) = ξ0, (4a)

ȳ(t) = h̄(ξ(t), u(t)), (4b)

with ξ(t) ∈ Rnξ and ȳ(t) ∈ Rny is called model of (1) at (s, ℓ)
if (4) has the same moment at (s, ℓ) as (1).

3 Data-Driven Moment Matching
We focus on the case in which the state-space model of (1)
is unknown and only noisy measurements of the form z(t) :=
y(t) + e(t) ∈ Rny are measurable for all t ∈ R, where y(t) is
the output of the interconnected model and e(t) ∈ Rny is an
additive white noise as shown in Fig. 1. In particular, we define
the dataset

D =
{(

t̄i, ω̄i, ūi, z̄i

)}N

i=1 ⊆ R × Ω × Rnu × Rny (5)

where N ∈ N is the amount of data collected, for all i ∈
{1, . . . , N}, t̄i is the i-th sampling time, ω̄i = ω(t̄i), ūi = u(t̄i),
and z̄i = z(z̄i). For simplicity, we define q̄i := (ω̄i, ūi) ∈ Q :=
Ω × Rnu .

From the properties of the interconnected system and the def-
inition of moment, we have

z(t) = h(π(ω(t)), ℓ(ω(t))) + τ(t) + e(t)

where, for all t ∈ R, the function τ : R → Rny describes the
output transient response that decay exponentially. Hence, we
define the estimator of the moment µ̂ as the solution of the
optimization problem

µ̂ := argmin
µ∈H

N∑
i=1

∣∣∣z̄i − µ(q̄i)
∣∣∣2

+ ρ
∣∣µ∣∣2

H, (6)

where H is a RKHS containing functions that map Q to Rny ,
| · |H is the norm on H, and ρ > 0 is a parameter to be tuned.
The optimization problem (6) accepts a unique solution that can
be computed analytically using the Representer theorem [5]. In
particular, we have

∀q ∈ Q, µ̂(q) =
N∑

i=1
(kq̄i

ci)(q) =
N∑

i=1
k(q̄i, q)ci,

where k : Q × Q → Rny×ny is the kernel associated with H.
The following proposition provides a way to select a viable

kernel.
Proposition 1. Given Assumption 1, the RKHS H contains
only valid moment functions only if k(0, 0) = 0ny×ny .

Finally, we also show that the effect of the transient on the
estimator decay exponentially with time as perceivable from the
local exponential stability of the model.

ω̇ = s(ω)
u = ℓ(ω)

ẋ = f(x, u)
y = h(x, u)

u(t) y(t)
+

z(t)+

e(t)

Figure 1: Block diagram of the interconnected system.
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Figure 2: Time history of the ideal moment (dashed line, black),
estimated moment of the estimation with the median perfor-
mance of the Monte Carlo experiment (solid line, red) and the
range of all the Monte Carlo experiments (light red area).

4 Numerical Example
In this section, we validate the proposed methodology by esti-
mating the moment of an unknown DC-to-DC Ćuk converter [6]
from some noisy measured data. We let the signal generator be
a Van der Pol oscillator [7]. The results of a Monte Carlo simu-
lation are summarized in Fig. 2.
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In recent years, Industrial Cyber-Physical Systems (ICPS) within Industrial Control Systems (ICS) have 
faced increasing cyber-attacks due to greater connectivity, adoption of open-source protocols, and use 
of off-the-shelf products. These attacks can cause cyber anomalies like unauthorized IP addresses and 
data flow disruptions, potentially leading to physical asset breakdowns and compromising the ICS 
infrastructure. In this regard, it is crucial to ascertain whether these physical failures stem from cyber 
anomalies or from malfunctions in the physical components due to factors like aging, insufficient 
maintenance, or intentional physical sabotage [1,2]. Cyber-Physical Anomaly Detection (CPAD) 
algorithms address the joint monitoring of cyber and physical data that result in the detection of cyber, 
physical, and cyber-physical anomalies over the ICS. Such algorithms fall into three categories: 
signature-based, detecting known attacks via a database; behavior-based, identifying anomalies by 
learning normal behavior using data-driven approaches like machine learning; and specification-based, 
detecting anomalies by modelling ICS through probabilistic or mathematical methods. Recently, 
scientific literature has been investigating more and more the possibility of merging both behavior-based 
and specification-based algorithms to reduce false positives, commonly produced by behavior-based 
methods, and to lower the computational load associated with mathematical and probabilistic 
modelling, the primary drawback of specification-based approaches. Nevertheless, there is still little 
attention on deploying such “hybrid” algorithms to both the cyber and physical domains of the ICS, as the 
scientific literature mainly focuses on the monitoring of cyber anomalies [3]. Moreover, considering the 
distributed nature of ICPSs which are mainly deployed in critical infrastructures, like water treatment, 
and smart grids, there is a need to provide distributed multi-source and multi-modal CPAD algorithms 
that can detect anomalies in the different assets of the same infrastructure. Such algorithms may 
leverage data, feature, and decision fusion techniques that can merge the predictions of multiple, 
possibly redundant, detectors with the aim of making an agreed decision about an ongoing cyber, 
physical, or cyber-physical threat. Nevertheless, decision fusion techniques suffer from the possible 
presence of faulty detectors which could negatively weigh the final decision [4]. This motivates the 
dynamic self-adaptation of decision fusion to run-time uncertainty in order to prevent performance 
degradation and increase fault tolerance. Such self-adaptation is enabled by decision fusion’s 
explainability, which can be defined as the ability of decision fusion to provide insight into how many, 
which, and to what extent possibly faulty detectors contribute to the final decision.  
Considering the limitations in current scientific literature, this work proposes two novel frameworks, 
namely “A hybrid behavior-and Bayesian network-based framework for cyber–physical anomaly 
detection” and “A two-level fusion framework for cyber-physical anomaly detection”.   

mailto:*s.guarino@unicampus.it


The first contribution proposes a novel hybrid “multi-formalism” CPAD framework for combining the 
outcomes of unsupervised behavior-based anomaly detectors applied to cyber and physical data through 
the adoption of a static Bayesian network. In more detail, the framework consists of two behavior-based 
anomaly detection modules that monitor separately and simultaneously the behavior of cyber and 
physical data acquired from the ICPS in order to detect and localize cyber, physical, and cyber-physical 
anomalies over the plant. By filtering and combining the outputs of the behavior-based anomaly detection 
modules through a Bayesian network-based modelling, the framework is able to: (I) provide the detection 
probability of cyber, physical, and cyber-physical anomalies; (II) improve the trustworthiness of the 
detected anomalies by taking into account the anomaly detectors’ confidence about their decisions; and 
(III) localize the detected anomalies, taking into account possible cascading effects over the cyber-
physical process.  
The second contribution proposes a novel flexible framework for multi-source and multi-modal CPAD 
which enables the combination of multiple and redundant CPAD detectors by means of a Time-Varying 
Dynamic Bayesian Network (TV-DBN) implemented as an explainable decision fusion technique. The 
framework involves two phases, namely the setup and inference phases. The former involves splitting the 
referenced ICPS into distributed subsystems and implementing the first detector-level fusion by training 
CPAD detectors on historical cyber-physical data, whereas the latter involves collecting evidence in 
terms of crisp labels from the multiple ICPS distributed subsystems and processing such evidence 
through the second ensemble-level fusion. Explainable ensemble-level fusion is implemented by a 
decision fusion technique that involves proportional voting inside a self-adaptive TV-DBN. This approach 
penalizes faulty detectors, excluding them from the decision fusion process if their reputation falls below 
an acceptable threshold. The framework and explainable decision fusion technique allow for: I) weighing 
evidence from CPAD detectors by taking into account the confidence about their decision; II) evaluating 
CPAD detectors’ behavior, i.e. their reputation, over time, based on their past decisions; and III) 
dynamically including or excluding CPAD detectors when performing ensemble-level fusion. 
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Distributed Control of a System of Systems via Consensus Alternating
Direction Method of Multipliers: a Quadruple Tank Application
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I. INTRODUCTION
The problem of controlling a System of Systems (SoS)

has been tackled with both distributed and centralized ap-
proaches. The distributed strategy is usually adopted when
different agents may have a partial observation of the whole
system and can control a subset of the subsystems by
sharing information among them. The goal of this work
is to provide a general control algorithm that can be used
to control in a distributed manner an unconstrained multi
agent System of Systems, while also testing it in a real
environment where disturbances may happen. In particular,
the coordination problem was formalized and solved by
using a combination of the Model Predictive Control (MPC)
paradigm, Linear Quadratic Tracking (LQT) techniques, and
Consensus Alternating Direction Method of Multipliers (C-
ADMM).

II. SYSTEM ARCHITECTURE AND ALGORITHM

A. System Model

Let S represent a non-linear differentiable system with
dynamics defined by the function f (x,u) and let Sd be its
linearized around the equilibrium pair (xe,ue) and discretized
with sampling time Ts version:

Sd : x(k+1) = Ax(k)+Bu(k) (1)

where x(k) ∈ RN and u(k) ∈ RU represent the deviation of
the state and the control variables from the equilibrium point
and A ∈RN×N and B ∈RN×U describe the system dynamics.
The objective is defined as making the system track, for an
arbitrary long period of time Tob j, a set of state references
while trying to keep the control variables as close as possible
to the equilibrium values. In order to do it, a receding horizon
approach is chosen and the centralized cost function that will
be recursively minimized is:

J(x,u) =
T−1

∑
k=0

[(x(k)− x∗(k))′Q(x(k)− x∗(k))+

+u(k)′Ru(k)]+(x(T )− x∗(T ))′QT (x(T )− x∗(T )) (2)

with T ≪ Tob j being the control problem horizon while, to
keep computations simple, Q, QT and R are the diagonal
positive definite weight matrices. Now, let the j− th agent,
where j = 1, . . . ,M, have access to information from only a
specific portion of the system. A subsystem S j can be defined
to represent the part of Sd of which the dynamics are known

1 All the authors are with the Department of Informatics, Bioengineering,
Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa,
16145 Italy

to agent j and that is also directly measurable by it. However,
agent j may not be able to directly manipulate all the inputs
that affect the subsystem’s state. It is supposed that, between
the M subsystems S j, all the state variables and inputs of the
system Sd appear at least once.

S j :

{
x j(k+1) = A jx j(k)+B ju j(k)
y j(k) =C jx j(k)

(3)

where x j ∈RN j represents the subset of the N j state variables
that compose the dynamics known by agent j, u j ∈ RU j is
the subset of all the control variables in u that affects x j,
and C j is the matrix used to retrieve measurements of agents
involved in the subset. Unless some sensor failure happens,
it is always assumed C j = IN j . Subsequently, a cost function
is defined for each agent as:

J j(x j,u j) =
T−1

∑
k=0

[
(x j(k)− x∗j(k))

′Q j(x j(k)− x∗j(k))+

+ u j(k)′R ju j(k)
]
+

+(x j(T )− x∗j(T ))
′Q j(T )(x j(T )− x∗j(T )) (4)

J(x,u) =
M

∑
j=1

J j(x j,u j) (5)

with suitable positive definite diagonal weight matrices Q j,
Q j(T ) and R j.

B. Control Algorithm

The C-ADMM can then be employed to solve the coordi-
nation problem that arises due to multiple agents ”sharing”
a control input (while only a single agent can actually
manipulate it). By duplicating the control variables inside
u j and extending the vector to contain all the inputs in u
for each agent j, while also exploiting the use of the MPC
paradigm (more details can be found in [1]), the optimization
problem that needs to be solved can be written as:

min
v1,v2,...,vM

M

∑
j=1

J j(x j,v j) (6a)

s.t. x j(k+1) = A jx j(k)+B jv j(k)

∀ j ∈ [1, ...,M] k = 0, ...,T −1 (6b)
v j(k) = z(k)

∀ j ∈ [1, ...,M−1],k = 0 (6c)

where v j is the aforementioned extended control vector, z is
the standard consensus vector used in C-ADMM, matrices
B j and R j are updated to be consistent with the new input
vectors, and (6c) are the consensus constraints required



to hold just for the first time instant (k = 0) due to the
simplification introduced thanks to the use of MPC. Then,
as usually done, the Augmented Scaled form Lagrangian of
the problem, dropping the time argument, can be defined as:

Lρ =
M

∑
j=1

[
J j(x j,v j)+

ρ

2

∥∥∥v j − z+
λ j

ρ

∥∥∥2
− 1

2ρ
∥λ j∥2

]
(7)

Where ρ > 0 is the penalty parameter for all the vectors of
constraints, and λ j is the Lagrangian multipliers vector of the
j−th vector of constraints. When minimizing the Lagrangian
formulation with respect to a single control vector, after a few
computations, the minimization problem can be traced back
to a standard LQT optimization problem. This, by denoting
with s the generic iteration step, leads to the final formulation
of the control algorithm:

v∗(s)1 = R̃−1
1

ρ

2

(
z(s)−

λ
(s)
1
ρ

)
.

v∗(s)M = R̃−1
M

ρ

2

(
z(s)−

λ
(s)
M
ρ

)
.

v(s+1)
1 = argmin

v1

Lρ(v1, ..,v
(s)
M ,v∗(s)1 , ..,v∗(s)M ,λ

(s)
1 , ..,λ

(s)
M )

. (8)

v(s+1)
M = argmin

vM

Lρ(v
(s)
1 , ..,vM,v∗(s)1 , ..,v∗(s)M ,λ

(s)
1 , ..,λ

(s)
M )

z(s+1) =
1
M

M

∑
j=1

[
v(s+1)

j +
( 1

ρ

)
λ
(s)
j

]
λ
(s+1)
1 = λ

(s)
1 +ρ

(
v(s+1)

1 − z(s+1)
)

.

λ
(s+1)
M = λ

(s)
M +ρ

(
v(s+1)

M − z(s+1)
)

The formulation of the control reference v∗j is found to make
the argmin step of the algorithm solvable with dynamical
programming. Additionally, since the MPC simplification are
still employed, the control references will be 0 for all the time
instants successive to the first. Finally, the update steps of z
and all the λ j refer to the control vector at k = 0.

III. CASE STUDY AND RESULTS

All of the experiments performed in this work were done
on a system as that of Figure 1. In particular, the system was
linearized around an equilibrium point and discretized with
a sampling time of Ts = 0.2sec.
In the first case a simulated environment is used and the
focus is put onto tanks 1 and 3, with their state references
being:

h∗1 = 0 h∗2 = 0.3+0.5cos(0.1t)

h∗3 = 0 h∗4 = 0.3+0.5cos(0.1t)
(9)

An external ”step-like” disturbance of 2.5 cm of water is
added in the tanks at time instants t1 = 60 s and t3 = 105.
The result can be seen in Fig. 2.

Pump 1 Pump 2

� �

1-�
1-�

S S

SS

s1 s3

s2 s4

h3

h2 h4

Sub-system 1 Sub-system 2

h1

Fig. 1. Quadruple Tank Plant system configuration.

Fig. 2. Water tank levels with respect to the references in the numerical
simulation with external noise.

In the second experiment instead, the real system created by
Quanser was tested with the state references now flipped and
a similar noise was added at around t = 105. The outcome
can be seen in Fig. 3 and also shows how using a Kalman
Filter helped diminishing the impact of a faulty sensor, as it
can be seen by looking at the actual level of tank 4.

Fig. 3. Water tank levels with respect to the references with the second
water sensor not working, with external noise, and using the Kalman filter.
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In the field of control systems, Single-Input Single-Output (SISO) systems have historically received
significant attention due to their straightforward mathematical modeling and analysis [2]. However,
real-world applications often involve Multi-Input Multi-Output (MIMO) systems, which present greater
challenges due to their multivariable nature where each input can affect multiple outputs [4], this research
is focused on extending the Set-Membership Data-Driven (SMDD) approach, originally developed for
SISO systems, to MIMO systems. The SMDD approach directly tunes controllers from input-output
data without requiring plant model identification, thereby simplifying the tuning process while assuming
data sets are affected by Unknown But Bounded (UBB) noise [5].

The SMDD framework involves a control system where the controller is parameterized as a linear
combination of fixed basis functions. The parameters are found by minimizing the difference between
the desired reference model and the actual closed-loop transfer function, see Fig. 1. This minimization
provides the best controller parameters that stabilize the system while achieving the desired performance,
given a set of noisy input-output data, D = {u(k), y(k), k = 1, 2, · · · , N} collected from the plant, and
provides a closed loop stability certificate. The Unknown But Bounded (UBB) noise/disturbances v(k)
are constrained by ||v(k)||∞ ≤ ϵ, where ϵ is the unknown bound on the maximum amplitude of the
noise. Therefore, the tuning involves solving an estimation problem with UBB additive noise, efficiently
managed through a Set Membership formulation.

Fig. 1: Control System Tuning Structure.

When analyzing MIMO systems, where matrix commutativity does not hold, data-driven tuning
approaches used in SISO systems cannot be directly applied to controller design. Taking into account
the methodology presented in [3] to avoid the commutativity problem in matrices, graphically described
in Fig. 2. This research outline an extension of the SMDD method to MIMO systems, leveraging the
characteristics of the SMDD approach used in SISO applications.

(a) Output y(k) (b) Output y(k) superposition

Fig. 2: Commutation Blocks

Even though the amount of data and the number of experiments increase, leveraging the commutativ-
ity between the matrices allows the matching error in Fig. 1 to be redrawn in a simplified way, as shown
in Fig. 3. For this reason, the solution of the SMDD approach for MIMO systems can be found.

Aditionally, a detailed comparison with the Virtual Reference Feedback Tuning (VRFT) methodol-
ogy as outlined in [1],is provided. Fig. 4 shows the step response for both inputs in a 2x2 MIMO system.

1



Fig. 3: Modified Matching Error

It also illustrates the cross-coupling effects between the inputs and outputs. Both controllers guarantee a
stable response that effectively tracks the step reference signals; however, upon closer examination, both
controllers exhibit some overshoots and are not perfectly decoupled. In this case, the SMDD approach
demonstrates better performance than the VRFT method, as show in the figures.
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Fig. 4: Output y(k) : Reference−Model Blue, SMDD Red, V RFT Yellow

Throughout this research, it is evidenced that the SMDD controllers demonstrated better performance
in terms of stability and response tracking compared to the VRFT controllers. Both methods were tested
under identical conditions, and the results showed that the SMDD approach resulted in more stable and
well-decoupled responses. Key performance indicators such as rise time, overshoot, and settling time
were used to evaluate the performance and responsiveness of the MIMO system. Aditionally Integral
Square Error (ISE) and Integral Absolute Error (IAE) were calculated to evaluate the decoupling error,
validating the effectiveness of the SMDD approach.
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Extended abstract 
Sensors occupy a very sensitive role in modern society, despite the extraordinary boom of brand-new applications 
related with the progress in sensing technologies, and they can be considered as pillar in the Industry 4.0 framework. 
As a matter of fact, sensors are the cornerstone for the majority of security systems. Critical damages (in economic, 
environmental, and health terms) can be caused by the failure of a single sensor, making sensors' reliability an aspect 
of primary attention in all safety applications. 
Abrupt sensors fault are frequent, but the most common situation shows sensors that slowly vary their sensing 
capabilities along time, generating the so-called Concept Drift (CD). 
This issue is hard to diagnose and can silently supply corrupted information in many control (or system identification) 
problems, inducing nonuniform control action, excessive actuators efforts, or wrong statistical inference. 

Figure 1: Degradation trends 
Figure 2: Degradation speed trends 

The drift simulation is not trivial since we are dealing with completely unpredictable phenomenas that affect all the 
sensors employed nonuniformly, and the process can be triggered at any instant of the node life. 
Preventive actions like sensor redundancy and continuous maintenance, are commonly employed in case of very 
severe sensor reliability requirements, such as in avionics, nuclear plants, dams, heavy mechanical industry, and 
many more applications. On the contrary, a lot of applications that do not have a so relevant security impact, can not 
motivate such economic effort. 
Water Quality Monitoring (WQM) is of indisputable importance, due not only to the risks to human health and 
environment, but also in its potential to affect a large region in a relatively short time [1]. The advantage of collecting 
chemical sensor data for ensuring water pureness is an extremely powerful solution against abusive landfill, excessive 
pesticide usage, and industrial discharge. On the other side it requires an important displacement of resources since 
a typical WQM scenario is constituted by a wide area sensor network, for which constant maintenance and redundant 
sensors installation often remains an infeasible solution for both economical and practical reasons.  
The development of the Machine Learning (ML) sector has significantly broadened the ways they can be used. In fact, 
chemical and electrochemical applications are hard to model analytically, primarily because model-based 
approaches require strong expertise and knowledge in chemistry, and they are only suitable for protected 
environments (e.g. pipelines) in which there is a limited incidence of external/hard-observable factors [4]. Machine 
leaning models are proved to be an effective way to deal with chemical classification problem [1]. The main limitation 
of those methodologies in WQM stay in the high susceptibility of chemical sensors to corrosion phenomena. Being 



   
 

   
 

continuously in contact with organic or corrosive substances and varying temperatures along the day, chemical 
sensors often tend to fail, making their reliability strongly decreasing over time. 
It is possible to find several CD handling techniques in the literature [2], all of them require the possibility to collect 
new supervised data for the estimation of the drift effect according to their time variation. In this way the drift dynamics 
can be identified and corrected. So, sensor nodes placement must be as capillary as possible in order to precisely Geo 
localize water contamination. This aspect directly translates in additional costs in the infrastructure maintenance 
This research discusses a possible approach for CD handling in WQM by using Machine Learning classifiers as “fake-
supervisors” for labeling incoming new data. To this aim, the classifier must be reliable inside a certain neighborhood 
of the original training dataset centroids. Hence, by collecting data through a commercial WQM sensor, we simulate 
the aging process by means of an electrochemical corrosion model [5].  
 

In order to properly simulate a likely similar degradation 
pattern, a degradation function has been implemented 
in python. Starting from any multi-sensor set of data, the 
function establishes a simulation time object and 
generate a syntetic degraded dataset according to the 
degradation pattern defined by the user. The possible 
degradation parameters are: degradation intensity 
values, degradation velocity trend (see Fig.1), 
degradation starting time and the sensor end of useful 
life time. 
The results of the comparison shows that in terms of 
accuracy over time in Fig. 3, which shows a pairwise 
comparison of the considered techniques, it is notable 
that both K-nearest neighbors algorithm and 
classification Trees with raw data achieve almost 
perfect classification when no drift occurs. Even the 
models trained with PCA data (only the first 4 principal 
components were used for the training phase) show the 
same classification accuracy, highlighting the 
considerable redundancy of the proposed dataset. 
Neural Networks instead present a starting accuracy of 
almost 99% for the model with raw data and slightly 
suffers the loss of information on the 4-features PCA 
transformed data model, dropping to 97% of accuracy. 
Regardless of the used ML technique, relevant 
differences can be observed when the PCA is used in the 
presence of drift. PCA seems to mitigate more the effect 
of the drift in the accuracy dropping speed, especially 
for NN which has significantly recorded the slower 
accuracy drop trend. 

 

The experiment is repeated with different substances among the original 15 sub dataset and with different degradation 
patterns. All the experiments have shown the same classifiers behavior, confirming the significant superiority of the 
Neural Networks against all the simulated CD, and the noticeable effect of the PCA transformation in slowing the 
accuracy drop. 
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Background

The collective response to an emergency is a complex emer-
gent phenomenon, whose study is of paramount impor-
tance in social science and risk management [1]. However,
few analytically-tractable mathematical models have been
proposed in the literature to study such an important phe-
nomenon. On the one hand, social-psychological efforts
typically focus on elucidating the individual-level risk in-
terpretation process [2, 3], overlooking how this leads to
collective emergent behaviors. On the other hand, classical
mathematical models focus on an abstract representation of
opinion dynamics [4], neglecting the specific characteristics
of risk perception. To the best of our knowledge, few agent-
based models have been proposed for this purpose [5], but
they rely on complex mechanisms which hinder establishing
rigorous analytical results, ultimately calling for the devel-
opment of a novel analytically-tractable model for collective
risk perception.

In particular, we fill in this gap by leveraging the mathe-
matical theory of opinion dynamics [4, 6]. Specifically, we
consider a scenario in which an institution broadcasts an es-
timate on the nature of the risk of a given emergency. How-
ever, it is known from the social psychology literature that
individuals, besides receiving institutional information, they
also exchange information with their peers and re-elaborate
it on the basis of their own risk perception [2, 3]. Our model,
proposed in [7], encapsulates these key features, ultimately
yielding a realistic and analytically-tractable framework to
study how social interactions and individual traits shape the
collective risk perception.

Model

We consider n individuals connected through a time-
invariant network that captures social influence. Each in-
dividual i ∈ V is characterized by an opinion xi(t) ∈ [0,1],
which represents individual i’s risk perception on the emer-
gency at time t ∈N, and by three parameters: risk sensitivity
ρi ∈ {+1,0,−1}, which can be high, neutral, or low; trust
in institutions τi ∈ [0,1]; and trust in peers µi ∈ [0,1] (with
τi + µi ≤ 1), which capture how much i values information
gathered from the two different sources.

Individuals’ opinion evolves over time according to a two-
step mechanism, in accordance with observations from the
social-psychology literature on risk interpretation [2, 3]: i)
they gather information from the institution and from peers;
ii) they process it according to their own risk sensitivity. For
simplicity, we denote the intermediate step of the update
process from xi(t) to xi(t +1) as zi(t).

Step I (information gathering). At each time step t ∈ N+,
each individual receives information from the institutions
about the nature of the risk. Specifically, the institution
broadcasts a (constant) signal ι ∈ [0,1], which quantifies the
nature of the risk, where ι = 0 means no risk and ι = 1
corresponds to maximal risk. At the same time, individuals
also gather information from their peers [2]. Specifically,
each individual i interacts with a peer j, selected uniformly
at random among i’s neighbors. Then, j decides to share
their opinion x j(t) with i with probability equal to f j(x j(t)),
where f j : [0,1]→ [0,1] is a function termed sharing proba-
bility that maps the opinion of individual j to their tendency
to communicate it and captures the fact that people tend to
transmit information that is in accordance with their risk per-
ception [3]. Finally, individual i revises their opinion by av-
eraging their current one with the information received from
the different sources of information, with weights given by
the trust in institutions τi and in peers µi, respectively, fol-
lowing a standard linear averaging process used in opinion
dynamics models [4], i.e.,

zi(t) = (1−µi − τi)xi(t)+µi ∑
n
j=1 Ai j(t)x j(t)+ τiι , (1)

where Ai j(t) = 1 if j shares their opinion with i at time t and
0 otherwise, and Aii = 1 if i does not receive information
from their peers at time t and 0 otherwise.

Step II (opinion processing). After revising their opinion
using the information gathered from external sources (insti-
tutions and peers), individuals further process it based no
their own risk sensitivity. Specifically, following [3], we as-
sume that each individual i updates their opinion as

xi(t +1) =


1
2 (1+ zi(t)) if ρi =+1,
zi(t) if ρi = 0,
1
2 zi(t) if ρi =−1.

(2)



Overall, the entire two-step opinion update mechanism can
be cast in a compact form as a linear averaging dynamics
on a time-varying network (see [7] for more details), which
can be interpreted as a Friedkin–Johnsen opinion dynam-
ics model [8]. However, the complexity of the network for-
mation process (which is inherently time-varying and state-
dependent) does not allow to directly apply the existing re-
sults, making the study of our model nontrivial.

Results

We observe that the opinion of each individual, xi(t), may
not necessarily converge to a steady-state, but it can oscil-
late, due to the stochastic nature of the process, as reported
in the left panel of Fig. 1. However, we can define the tem-
poral average opinion of agent i as

yi(t) :=
1

t +1 ∑
t
s=0 xi(s), (3)

for which we can prove the following convergence result,
under some reasonable assumption on the network connec-
tivity and the positiveness of the sharing probability, the na-
ture of the risk, and trust in the institution.

Theorem 1 The temporal average opinion yi(t) converges
almost surely to a steady state ȳi, for all i ∈ {1, . . . ,n}.

The proof, which can be found in [7], rely on a two-step
argument. First, we focus on the mean dynamics mi(t) =
E[xi(t)], for which we write the recursive equation

mi(t +1) =
(
1−λi

)
∑

n
j=1 Wi j(m(t))m j(t)+λiui, (4)

where λi and ui are constants (that depends on the model
parameters), and W(x(t)) is a state-dependent and weighted
adjacency matrix, and we prove its convergence, leverag-
ing tools from linear averaging models on time-varying net-
works [6]. Second, we prove that the process is ergodic [9],
implying that if mi(t) converges to m̄i, then it also holds true
that limt→∞ yi(t) = m̄i.

The result in Theorem 1, not only guarantees convergence,
but provides also a way to compute the steady-state value,
by computing the equilibria of (4). However, in general,
the computation of such a steady state is nontrivial since (4)
consists of a system of n coupled nonlinear equations. How-
ever, for specific implementations of the model, we are able
to establish a closed-form solution. Specifically, we focus
on the scenario in which individuals interact on a complete
networks and trust parameters are homogeneous across the
population, but individuals have heterogeneous risk percep-
tion. In such a scenario, the network symmetry allows us
to reduce the problem to 3 coupled equations [7, Theorem 2
and Proposition 5], from which we can conclude that the
presence of even a minority of individuals with high risk
sensitivity could lead to a systematic overestimation of the
risk, potentially triggering mass panic reactions.
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Figure 1: Temporal evolution of (left) opinions and (right)
temporal average for a simulation of the model.

Conclusion

The formulation of an analytically-tractable model for risk
perception that rely on the mathematical theory of opinion
dynamics and its analysis pave the way for several avenues
of future research, including i) the extension of our analyti-
cal results to unveil the impact of the network structure and
heterogeneity across the population on the system’s emer-
gent behavior; ii) the expansion of our model, incorporat-
ing further real-world features (e.g., the presence of media
which may bias the information broadcast by the institution
and the presence of polarization in social networks); iii) the
validation of the model in real-world scenarios, using exper-
imental and survey data on risk perception.
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I. INTRODUCTION

Automatic control algorithms can be employed as im-
portant assistant tools for a correct and safe procedure
of anaesthesia. This is usually performed during surgical
operations and/or during treatment in the intensive care unit
by propofol and/or remifentanil administration. The goal is to
achieve a desired Depth of Hypnosis status (DoH) which is
monitored with the bispectral index (BIS), a dimensionless
number between 0 and 100 based on the analysis of the
electroencephalogram (EEG). The lower limit corresponds to
a flat EEG signal, while the upper one indicates a fully awake
patient. Purpose of the anaesthesiologist is to furnish and
guarantee over time the correct dosage of drug to fast induce
DoH in patient and to maintain the BIS level in the target
range [40,60], corresponding to an optimal balance between
the risk of awareness and the heaviness of the hypnosis.
From the mathematical point of view, the most common com-
partmental Pharmacokinetics-Pharmacodynamics models, as
described in the linear ODE system (1), state the exchange
of one drug (or more in realistic applications) among three
fundamental compartments. Output of the PK-PD model
is the effect-site concentration, which in turn algebraically
determines the BIS level through the non-linear Hill function
(2). In this work, we address the problem of identification
of all the parameters apart from E0, which can be measured
at the beginning of the induction phase, with a Branch and
Bound research method, for which difficulties are compelled
by the non-linear dependence of the model itself on the
patient related constants we want to determine.

A. Patient based PK-PD model and Hill function

Concentration and the effect of the hypnotic agent are
governed by a PK/PD model with three compartments:

q̇1(t) =−(k10+k12+k13)q1(t)+ k21q2(t)+ k31q3(t)+ v(t)
q̇2(t) = k12q1(t)− k21q2(t)
q̇3(t) = k13q1(t)− k31q3(t)
Ċe(t) = k1e(q1(t)/V1)− ke0Ce(t)

(1)
with q1, q2, q3 being the drug masses, expressed in mg,
respectively in the primary (blood and liver), in the fast
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Fig. 1: Hill function plot for different identification parame-
ters (assuming E0 = 100 and Ce50 = 40 fixed).

(muscles and viscera) and in the slow compartment (fat
and bones). The input v is the drug mass-flow, expressed in
mg/s. Variable Ce is the effect-site concentration, expressed
in mg/L. The transfer rates ki j, for i, j ∈ {1,2,3}, and the
drug elimination rates k10, ke0, are expressed in s−1. The
measured output is the BIS value, computed from Ce through
the following Hill function:

BIS(t) = h(Ce(t)) = E0 −Emax

(
Ce(t)γ

Cγ

e50 +Ce(t)γ

)
, (2)

where Ce50 is the effect-site concentration that corresponds
to half of the maximum effect. At each instant t, BIS(t)
belongs to range [E0 −Emax,E0]. Constant E0 represents the
BIS level of a fully awake and alert patient, while E0−Emax
is the maximum achievable effect with drug administration.
The exponent γ > 1, controls the patient’s sensitivity to the
hypnotic agent governing the drop of the BIS level with
respect to the Ce, as shown in Figure 1. The objective of
this work is the identification of Emax and γ , parameters
onto which the model depends non linearly. Identification
procedure, as explained in the following sections, relies on
the residual minimization of the corresponding ARX model,
ideally depending on a recorded sampling of the BIS signal
and drug dosage during surgery.

B. The corresponding Wiener model
System (1)-(2) can be understood as a Wiener problem,

bolus function ν(t) and the effect site concentration Ce(t)
being respectively the input and the output of the system.
Defining the sampling period T > 0, for each k ∈ Z we set
u(k) = ν(kT ) and the normalized samples of the effect site
concentration c(k) =Ce(kT )/Ce50. It is indeed provable that,
given the general ARX model

c(k) =−α1c(k−1)− . . .−αNc(k−N)
+β1u(k−1)+ . . .+βMu(k−M),

(3)



the solution of (1) satisfies (3) if M = N = 4. In addition,
by defining the sampled BIS signal y(k) = BIS(kT ) we can
write

c(k) = g−1
γ,Emax

(y(k)) =
(

E0 − y(k)
Emax −E0 + y(k)

)1/γ

(4)

allowing to express the normalized concentration as output
of the inverse Hill function.

II. IDENTIFICATION PROBLEM

We assume to know input-output signals u(k) and y(k) for
a finite enumeration of sampling instants 0,1, . . . ,n. Identifi-
cation of the optimal point p = (γ,Emax), which we assume
affine to a enough large box P0 = [γ−,γ+]× [E−

max,E
+
max],

with E−
max set such that E−

max − E0 + mink y(k) > 0 and
γ− > 1, is pursued as well as the estimation of the optimal
ARX variable vector x = (α1, . . . ,αM,β1, . . . ,βN) ∈ RM+N

that minimize the residual (3), leading to the study of the
optimization problem

min
p∈P0,x∈RM+N

n

∑
k=max{M,N}

(
c(k)+

N

∑
i=1

c(k− i)αi −
M

∑
i=1

u(k− i)βi

)2

,

(5)
with c(k) computable from the output samples through (4).
Enhancing the matrix-vector structure of (5)

min
p∈P0,x∈RM+N

∥∥∥A(p) [1,x]⊤
∥∥∥2

(6)

where A(p)∈Rn×(M+N+1) is a C 2 function, it is immediate to
state that the dependence of the matrix on a set of parameters
makes it non-convex and non-linear. However, problem (6)
reduces to an exact linear regression whenever the resolution
algorithm compels the exact collocation of p in the box P.

III. BRANCH AND BOUND

We define P and f ∗ : P → R respectively as the set of
boxes included in P0 and the function

f ∗(P) = min
p∈P, x∈Rℓ

f̂ (p,x) = min
p∈P, x∈Rℓ

∥∥∥A(p) [1,x]⊤
∥∥∥2

. (7)

Further, we set f (p) = min
x∈Rℓ

f̂ (p,x) and we assume that it

exists a function L : P → R such that

(∀P ∈ P) L(P)≤ f ∗(P). (8)

Any L satisfying (8) is indicated as a lower bound func-
tion of f ∗. Further, let function r : P → Rq be such that
(∀P ∈ P) r(P) = pm, with pm being the central point of
the box (but choice of other points is permitted as well).
If ℓ = M +N, q = 2, Algorithm 1 [2] solves optimization
problem (6), implementing, in particular, a binary tree with
nodes associated to a restriction of Problem (8) to a box
obtained from a recursive splitting of the initial box P0. Note
that the choice of the lower bound function L is critical for
the performance of Algorithm 1 and therefore we address
the reader to [1] for a detailed discussion on the efficient
computation of L.

Id γob Emax,ob N M | f ∗(P0)| # LBs ∥ p̂− p∗∥
1 2.24 94.1 2 2 9.44e-8 49635 0.0073

3 3 3.13e-10 96415 0.0024

2 4.29 86 2 2 1.46e-6 39571 0.0085
3 3 1.04e-7 72179 0.0661

3 4.10 80.7 2 2 1.29e-6 33905 0.0089
3 3 7.81e-8 65609 0.0616

4 2.18 102 2 2 1.43e-7 43383 0.0086
3 3 2.62e-10 91699 0.0018

5 2.46 85.3 2 2 1.51e-7 52887 0.0039
3 3 7.46e-10 94013 0.0006

6 2.42 147 2 2 1.05e-7 33885 0.0348
3 3 1.20e-10 77747 0.0043

TABLE I: Numerical results.

IV. NUMERICAL TESTS

We considered the patients database in [1] (Table 1),
taking into account data related to the first 6 individuals,
differentiated by age, height, weight and gender. In particular,
p̂ = (γob,Emax,ob) furnishes the benchmark constants for
the identification experiments. Procedure in Algorithm 1
explores identification starting with the box B0 = [1,8]×
[40,160]. Induction interval of 300 second is sampled with
a period of T = 1s. Indicating with H[·] the Heviside step
function, the input

v(t) = 10 ·H[10− t]+3 · (H[t −10]−H[t −25])

represents a bolus of anaesthetic drug administrated in the
first 10 seconds, followed by a period of 15 seconds of lower
infusion. We set N = M in the ARX model (3), avoiding to
consider the case of a full order level N = M = 4, since the
input signal is too short to lead to a significant contribution
from the slow compartment in the BIS evaluation. The
sampled signal yid(k) is constructed solving (1) and using
Hill function (2) with parameters related to patient number
id. Table I presents the results of the numerical experiments:
in particular the fifth column collects the total number of
computed lower bounds, and the last one is the norm of the
difference between the estimated value p∗ of the parameters
of the Hill function and their true values p̂. Note that using
half the nodes compared to the N = 3 case, a second order
model results sufficient for an accurate identification.
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Algorithm 1 Main Branch and Bound algorithm
Input → solution tolerance ε , Output → optimal solution p∗

1) Let ζ be a list of boxes and initialize ζ = {P0}.
2) Set UB = f (r(P0)), and p∗ = r(P0).
3) If ζ =∅, stop. Else set δmin = min{δ (η) | η ∈ ζ}.
4) Select a box η ∈ ζ , with δ (η) = δmin and split it into

two equal smaller sub-boxes η1, η2 along the dimension
of maximum length.

5) Delete η from ζ and add η1 and η2 to ζ .
6) Update UB = min{UB, f (r(η1)), f (r(η2))}. If UB =

f (r(η j)) with j ∈ {1,2}, set p∗ = r(η j).
7) Let ζ = ζ \{κ ∈ ζ |UB ≤ (1+ ε)L(κ)}.
8) Return to Step 3.
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Introduction
Models of opinion formation have attracted significant attention from the interdisciplinary research community, engaging
scholars and scientists across fields such as sociology, engineering, and physics. Bounded confidence models [1], among the
simplest nonlinear models of opinion formation, are notable for their complex and sophisticated dynamics. The classical
Hegselmann-Krause model illustrates the evolution of scalar opinions influenced by “homophilous” social dynamics, where
each actor adjusts their opinion based on similar opinions from their peers while disregarding dissimilar ones. Existing
generalizations to the case of multidimensional opinions usually assess the similarity of opinions based on their proximity
in Euclidean space or another norm. In contrast, we propose a generalized model in which two opinions are considered
similar if their deviation lies within a specified confidence set. This set is not necessarily a ball in any metric and can be
unbounded; the only requirement is that it exhibits certain symmetry properties.

Model Description
Consider a group of n individuals (social agents), whose opinions changes at discrete moments of time t = 0, 1, . . . The
agent i ∈ {1, . . . , n} at time t has a multidimensional opinion represented by a vector ξi(t) = (ξi1(t), . . . , ξ

i
d(t)) ∈ Rd. The

interpretation of the opinion vector may vary. Such an opinion can, for instance, convey an individual’s stance towards
a particular object, a dimension that cannot be encapsulated by a single scalar quantity. Take, for example, an opinion
regarding the optimal distribution of a resource (material, financial, etc.) among multiple recipients or an individual’s
viewpoints on d distinct topics. When individuals form their own opinions, each agent considers only opinions that are
“similar” to their own, with similarity defined by a confidence set O(t) ⊆ Rd. This set may be time-dependent and
unbounded. Specifically, at time t, agent i trusts the opinions of agents from the set

Ni(t)
∆
= {j : ξj(t) ∈ ξi(t) +O(t)}.

Formally, Ni depends not only on time but also on the entire family of opinions (ξj(t))nj=1; but we write Ni(t) for the sake
of brevity. Assume that 0 ∈ O(t), indicating that the agent trusts their own opinion, i.e., i ∈ Ni(t).

At each step, the opinion of agent i is formed by averaging the trusted “similar” opinions, resulting in the dynamics

ξi(t+ 1) =
1

|Ni(t)|
∑

j∈Ni(t)

ξj(t), i = 1, 2, . . . , n. (1)

Main Results: The Model Behavior for Symmetric Confidence Sets
We analyze the asymptotic behaviors of system (1), specifically focusing on the convergence of opinions and their limits
as t → ∞. In the stationary case, where O does not depend on time, these values represent the system’s equilibria. Our
first result is as follows.

Theorem 1 Let the confidence set be symmetric: O(t) = −O(t) for all t ≥ 0. Then the opinions described by system (1)
converge to finite limits ξi(∞)

∆
= limt→∞ ξi(t), i = 1, . . . , n.

If, in addition, 0 ∈ Rd is an interior point of the set
⋂

t≥t0
O(t) for some t0 ≥ 0, the opinions cease to change after a

finite number of steps: ξi(t) = ξi(t+ 1) for t being large.

Theorem 1 does not specify how the limit opinions of a social group are structured for a given initial condition. At
the same time, under certain conditions it is possible to classify all limit opinions, as the following result shows.

∗The work is supported by the project 2022K8EZBW “Higher-order interactions in social dynamics with application to monetary networks”,
funded by European Union – Next Generation EU within the PRIN 2022 program (D.D. 104 - 02/02/2022 Ministero dell’Universitá e della
Ricerca). This manuscript reflects only the authors’ views and opinions, and the Ministry cannot be considered responsible for them.



Theorem 2 Let the confidence set O, satisfying the conditions of the theorem 1, be time-invariant. The family of opinion
vectors (ξ∗i )

n
i=1 is the equilibrium of the system (1) if and only if any two opinions from this set are either coincident

ξ∗i = ξ∗j or “dissimilar” in the sense that ξ∗i − ξ∗j ̸∈ O. If 0 serves an interior point of O, then any solution of the
system (1) converges (in a finite time) to one of these equilibria.

The key idea of the proofs [3] relies on convergence of type-symmetric consensus algorithms, as outlined in [1, Lemma 6]
and [2, Lemma 1], retracing the analysis of the multidimensional Hegselmann-Krause model.

Beyond Symmetry and Homogeneity: Some Counterexamples
Heterogeneous agents: Periodic Orbits. We first note that the key implicit assumption in Theorems 1 and 2 – the
homogeneity of agents – is crucial. Extending the model by replacing a common confidence set O with a family of sets
Oi and adjusting Ni(t) accordingly: Ni(t) = {j : ξj(t)− ξi(t) ∈ Oi}, can result in periodic orbits. For example, consider
the case where n = 3. Let O1 = (−3, 3) \ {−1, 1} and O2 = O3 = (−1, 1). Initially, agents have opinions ξ1(0) = 0,
ξ2(0) = −1, and ξ3(0) = 2. Agents 2 and 3 will keep their opinions constant, while agent 1’s opinion alternates between 0
and 1 at even and odd time steps. To generalize this to n > 3, simply add n− 3 agents with Oi = (−1, 1) positioned far
enough from agents 1, 2, and 3 so their dynamics remain unaffected. Thus, the opinion of a single “deviant” agent with
alternative views may not converge, even if the other agents maintain constant opinions.

Asymmetric Confidence Set: Periodic Orbits. Without symmetry in the sets O(t), the system can also exhibit
periodic solutions. Consider the confidence set O = {(−8, 14) \ Z} ∪ {−8,−6, 0, 14} Choose the initial opinions of six
agents have the values indicated in Fig. 1a. Using induction on t = 0, 1, . . . it can be easily checked that agents 1, 2, 6 are
isolated (trusting only themselves), yet influence (Fig. 1b) the other agents who change their opinions in the cyclic order:

ξ3(1) =
ξ3(0) + ξ6

2
= ξ5(0), ξ5(1) =

ξ5(0) + ξ2

2
= ξ4(0), ξ4(1) =

ξ4(0) + ξ1

2
= ξ3(0).

(a) n = 6 opinions at t = 0 (b) The topology of the confidence graph

Figure 1: Periodic solution caused by asymmetric confidence: (a) the initial condition; (b) the graph of interactions

Asymmetric Confidence Set: Infinite-Time Convergence and Non-Equilibrium Limit Point. In the absence
of symmetry, converging solutions generally do not terminate in finite time, and their limits need not be equilibria. An
example is illustrated in Fig. 2, where the confidence set O ⊂ R2 is a union of the open half-plane {ξ1 > 0} with the closed
ball centered at the origin of radius r > 0. This confidence set is not symmetric, but contains 0 as an internal point. The
initial opinions of three agents are indicated in Fig. 2b. If ∥ξ2(0)− ξ3(0)∥2 ≥ 2r, then the opinions of agents 2 and 3 will
never change, while the opinion of agent 1 converges over infinite time to the midpoint of the line segment connecting ξ2

and ξ3. However, choosing r = ∥ξ2(0)− ξ3(0)∥2/2, the limit opinions do not constitute an equilibrium.

(a) Confidence set. (b) Opinion dynamics.

Figure 2: No finite-time convergence without symmetry for ∥ξ2(0) − ξ3(0)∥2 ≥ 2r: (a) confidence set {ξ1 > 0} ∪ Br(0)
and (b) convergence of ξ1 in infinite time to the midpoint of the line segment connecting ξ2 and ξ3

References
[1] Bernardo C., Altafini C., Proskurnikov A., Vasca F. Bounded confidence opinion dynamics: A survey // Automatica.

2024. Vol.159. P.111302.

[2] Proskurnikov A., Tempo R. A tutorial on modeling and analysis of dynamic social networks. Part II//Annual Reviews
in Control. 2018. Vol. 145. P.166-190

[3] Zabarianska I., Proskurnikov A., Opinion Dynamics with Set-Based Confidence: Convergence Criteria and Periodic
Solutions (under review)//online as ArXiv: 2408.01753.



 

   
 

 
 
 
 
 
 
 

Session 6C: Control of actuators 
  



Control and Driving Technologies for Soft Robots
based on Dielectric Elastomer Actuators

Paolo Roberto Massenio1,2, Giovanni Soleti2, Carmen Perri1,2, Gianluca Rizzello2, and David Naso1

Abstract— Dielectric Elastomer Actuators (DEAs) are highly
attractive in the context of soft robotics due to their high
flexibility, large deformations, and self-sensing capabilities.
However, DEA-based soft robots face control challenges, such as
nonlinearities and complex dynamics, complicating the design
of model-based control strategies for position regulation and
trajectory tracking. Additionally, the high voltage required
to actuate DEAs often necessitates the use of bulky and
expensive voltage amplifiers, which hinder portability and cost-
effectiveness. This extended abstract briefly summarizes recent
solutions proposed by the authors to address these challenges.

I. CONTROL OF DEA-BASED SOFT ROBOTS

The soft robotic system considered in this work is shown
in Fig. 1. It features a planar module with a T-shaped
structure composed of two plates connected by a soft, flexible
backbone, compressed by two pre-tensioned rolled DEAs.
When a high voltage is applied to one DEA its stiffness de-
creases, causing the structure to bend toward the unactuated
DEA. This module can also be used to construct modular
soft tentacle arms. From a control standpoint, the system
in Fig. 1(a) faces typical challenges of DEA-based systems,
such as severe elastic nonlinearities, viscoelastic creep, and
control input limitations. It also encounters common issues in
soft robotics, including underactuation (2 DEAs for 3 DOF),
kinematic nonlinearities, and a configuration-dependent ac-
tuation matrix. These factors present significant obstacles
to developing a model-based control strategy for position
regulation or trajectory tracking.

In [1], the first attempt at designing a closed-loop position
controller using a model-based approach for the considered
system was presented. Noteworthy, this work introduced for
the first time a position control scheme for a multi-DOF
DEA-based structure. The control problem was formulated
within the optimal control framework, addressing nonlinear-
ities stemming from viscoelasticity and actuator coupling
using the Adaptive Dynamic Programming (ADP) approach.
The objective was to significantly enhance dynamics in
terms of settling time and reduced oscillations compared
to open-loop responses. Additionally, input constraints were
integrated by introducing a novel bounding function capable
of accommodating also asymmetric input bounds.

By changing the geometric parameters of the system,
bistability of the structure can be achieved. Bistability is a

1 Department of Electrical and Information Engineering,
Polytechnic University of Bari, 70126 Bari, Italy
e-mail: {paoloroberto.massenio; carmen.perri; david.naso}@poliba.it
2 Department of Systems Engineering,
Saarland University, Saarbrücken, Germany
e-mail: {giovanni.soleti; gianluca.rizzello}@imsl.uni-saarland.de
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Fig. 1. Considered system and actuation principle: (a) single module; (b)
left DEA actuated; (c) right DEA actuated; (d) full tentacle arm prototype.

key concept utilized in the design of energy-efficient soft
robotic structures, allowing them to maintain a deformed
shape without additional energy consumption. Furthermore,
it significantly enhances the system’s range of motion, albeit
at the cost of losing proportional regulation. To address
this challenge, we implemented in [2] a feedback control
scheme to maintain proportional regulation while preserving
the large displacements enabled by the bistable design. In
particular, we presented and experimentally validated a port-
Hamiltonian model for the DEA-driven soft robot. Using this
model, we developed an energy-based control law based on
passivity theory to stabilize unstable open-loop configura-
tions. We provided sufficient conditions for the existence of a
class of stabilizing controllers and introduced a Linear Matrix
Inequality (LMI) algorithm for practical controller design.

In [3], a significant advancement in the control design
of the DE-based soft robot was presented, focusing on
trajectory tracking. We introduced a nonlinear change of
coordinates that transformed the system into the collocated
form, simplifying controller design by decoupling the control
inputs from the configuration-dependent actuation matrix.
This coordinate transformation was well-defined within a
subset of the robot’s configuration space, derived using a
geometric argument to analytically determine the feasible
subset of configurations which ensured the invertibility of
the transformation. Leveraging this change of coordinates,
trajectory tracking was achieved through a partial feedback



linearization scheme, and we investigated the stability of
resulting zero dynamics under constant references.

Finally, in [4], we recently proposed a more general
framework particularly suited for controlling soft robots
with variable stiffness actuators that exhibit a non-negligible
internal dynamics. The goal was to design a feedback law
to achieve a target closed-loop mechanical impedance with
desired elastic and damping values, while ensuring the actu-
ator remains passive at the mechanical interaction port. This
created a modular motion control framework where actuators
can be controlled independently of the mechanical structure,
ensuring overall stability. We plan to apply this framework to
both DEA-based soft robots and other smart material-based
structures, such as those using shape memory alloys.

Future work includes refining the model with external
loads, experimentally validating the control strategies, and
developing trajectory planning techniques for the soft robot
shown in Fig. 1.

II. CUSTOM DRIVING CIRCUIT FOR DEAS

The high-voltage (HV) needed to actuate DEAs, typically
between 1 and 3.5 kV, represents their most critical aspect.
Off-the-shelf amplifiers are commonly used for HV control
up to 20kV. However, these devices are bulky, heavy, and
expensive, primarily intended for laboratory use.

In [5], we introduced a novel HV driving circuit for DEAs.
The circuit consists of a cascade configuration including
a resonant circuit, a three-coil transformer, a Greinacher
doubler-rectifier element, and an active discharging stage.
Figure 2 shows the circuit along with its block diagram.
This design is compact, lightweight, cost-effective, and con-
trollable via PWM input. It produced voltages ranging from
0 to 3 kV using a modulated low voltage input ranging
from 0 to 6 V, achieving an unprecedented goal for a circuit
with such small size and cost. To precisely control the
HV delivered to the DEA and to compensate the inherent
performance differences between the custom circuit and
the laboratory equipment, model-based closed-loop control
is essential. Therefore, a control-oriented dynamic model
was also developed in [5], with the goal of describing the
relationship between the low-voltage input signal and the
HV output during both charging and discharging phases of
the DEA. Balancing accuracy with computational efficiency
was challenging due to nonlinear and switching compo-
nents. Two models were developed for the charging and
discharging phases and integrated into a single switching
model. Experimental validation showed over 92% prediction
accuracy for input signals up to 5 Hz and above 79% up
to 100Hz. However, the soft robotic application described
above requires actuation frequencies below tens of hertz.

A motion control scheme for the HV circuit was intro-
duced and experimentally validated in [6]. The proposed
scheme involves a cascade architecture that combines an
outer position control loop for a conic DEA, utilizing a PID
controller in series with a square root function, with an inner
voltage loop that finely regulates the HV delivered to the
DEA. The switching model is used to derive a small-signal
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circuit
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μControl-
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Interface
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Disc. 

circuit

DEA

Fig. 2. HV driving circuit. (a) Circuit picture; (b) Circuit block diagram.

model of the circuit. This small-signal model is then used to
design a linear voltage control loop for the driving electronics
using a frequency domain approach. After comparing the
input-output behaviour of the HV circuit with and without
the voltage regulation loop (i.e., the inner loop), the proposed
controller was tested in combination with the outer position
loop. Experimental validation showed that the performance
achieved by the proposed approach was comparable to that
of expensive and bulky laboratory amplifiers, while the lack
of the inner voltage control loop has a significant impact on
the overall positioning accuracy.

Future developments include designing a nonlinear con-
troller to further reduce the performance gap between the
HV circuit and commercial amplifiers.

REFERENCES

[1] P. R. Massenio, J. Prechtl, D. Naso, and G. Rizzello, “Nonlinear optimal
control of a soft robotic structure actuated by dielectric elastomer
artificial muscles,” in 2022 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics (AIM). IEEE, July 2022.

[2] G. Soleti, J. Prechtl, P. R. Massenio, M. Baltes, and G. Rizzello,
“Energy based control of a bi-stable and underactuated soft robotic
system based on dielectric elastomer actuators*,” IFAC-PapersOnLine,
vol. 56, no. 2, p. 7796–7801, 2023.

[3] G. Soleti, P. R. Massenio, J. Kunze, and G. Rizzello, “Nonlinear
coordinate transformation and trajectory tracking control of an under-
actuated soft robot driven by dielectric elastomers,” in 2024 IEEE 7th
International Conference on Soft Robotics (RoboSoft). IEEE, Apr.
2024.

[4] G. Rizzello and P. R. Massenio, “Passivity-based impedance control of
a class of nonlinear actuators with internal dynamics,” in 2024 IEEE
18th International Conference on Advanced Motion Control (AMC).
IEEE, Feb. 2024.

[5] C. Perri, B. Holz, P. R. Massenio, D. Naso, and G. Rizzello, “Design,
modeling, and experimental validation of a high voltage driving circuit
for dielectric elastomer actuators,” IEEE Transactions on Industrial
Electronics, vol. 71, no. 5, p. 5083–5093, May 2024.

[6] C. Perri, P. R. Massenio, D. Naso, and G. Rizzello, “Closed loop
positioning of a dielectric elastomer actuator driven by a feedback-
controlled high voltage circuit,” in 2024 IEEE 18th International
Conference on Advanced Motion Control (AMC). IEEE, Feb. 2024.



1

Adaptive Reference Governor for DC-DC
Converters based on Model Predictive Control

Gionata Cimini, Riccardo Felicetti, Francesco Ferracuti, Luca Cavanini, and Andrea Monteriù

I. INTRODUCTION

DC-DC power converters are pivotal components in modern
electronics for voltage regulation, such as in DC microgrids,
photovoltaic power generation, brushless DC motors, auto-
motive, and consumer electronics. Although advanced con-
trol laws for DC-DC converters are mature and demonstrate
excellent results, standard PID controllers tend to dominate
the manufacturers’ production for industrial applications. Re-
placing a low-level controller of a power converter is often
infeasible or unsuitable, and even when it might be physically
possible, industrial certifications for stability and robustness
might prevent the change (see ISO 26262 for automotive).

When the converter cannot be replaced, Reference Gover-
nors (RGs) represent an appealing solution and are most often
designed as an Model Predictive Control (MPC) problem.
In the literature, the RG applications for DC-DC power
converters assume the mathematical model is a time-invariant
white-box model. This represents a limitation, because power
converters behaviour depends on various factors, including
converter topology, its components, the load characteristics,
and the operating conditions. Moreover, the RG necessitates
a closed-loop model, which includes the low-level controller,
which is probably not disclosed by the manufacturer.

The objective of this work is to overcome these limitations
by proposing an adaptive RG that combines a linear time-
variant MPC based on a black-box model that is identified in
real-time. What is here proposed and experimentally validated
is a plug-and-play solution (see Fig. 1) to improve the transient
behaviour of DC-DC converters that: i). fits a wide range of
converters, ii). is self-tuning (i.e., no prior modeling effort),
iii). is proven to run in real-time on cheap, conventional control
boards, iv). does not require to alter the original controller.

This abstract constitutes a shortened version of a full paper
currently under review for the IEEE Transactions on Control
Systems Technology.

II. RECURSIVE LEAST SQUARES IDENTIFICATION RLSFO

Consider the closed-loop DC-DC converter, denoted with
the dashed box in Fig. 1. Assuming that such closed-loop sys-
tem can be modeled using a SISO First Order (FO) linear time
variant system, its model boils down to yk−akyk−1 = bkuk−1,

G. Cimini is with ODYS S.r.l., 20159 Milano, Italy (e-mail:
gionata.cimini@odys.it).
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Fig. 1: Complete control scheme.

where yk, uk ∈ R are the output voltage and the reference
at the time step k. Assuming unitary gain in steady-state,
bk = 1−ak holds, and ak ∈ R can be estimated with Recursive
Least Squares (RLS) with a forgetting factor λk.

In usual operating conditions, the reference voltage rk is
piecewise constant, posing a challenge for system identifica-
tion, as such simple signal are known to be non-persistently
exciting [1]: if unmanaged, the outcome is parameter drift
and/or covariance blowup [2]. Thus, we employ a conditional
parameter update policy, stopping the update when the input
is not sufficiently exciting [2] (namely, in steady-state). The
total amount of FLoating-point OPerations (FLOPs) required
by the identification routine, named RLSFO , is 15, and the
memory allocation needed to run is 12 floats, including input
data.

III. REAL-TIME ADAPTIVE MPCFO

At each time k, we pose the following optimization problem

min.
ui,xi+1

1

2

p−1∑
i=0

(
∥yi+1 − rk∥2wy

+ ∥ui − ui−1∥2wδ

)
s.t. xi+1 = akxi + bkui

yi+1 = ckxi+1

(1)

Defining the input increment δk = uk − uk−1, and
z = [δk xk+1 . . . δk+p−1 xk+p]

⊺ ∈ Rm, with m = 2p,
problem (1) can be rewritten as the equivalent parametric
Quadratic Programming (QP) problem

z∗ = arg min
z∈Rm

1

2
z
⊺
Hz + z

⊺
Fθ

s.t. Ez = e
(2)

where H ∈ Rm×m is diagonal and positive definite, F ∈
Rm×p, θ =

[
rk . . . rk

]⊺
∈ Rp, and E ∈ Rp×m, e ∈ Rp

embed the dynamics of model. We present here the generic
steps of a direct method to solve the QP problem (2).

Theorem 1: Let us define D = diag(
[
ℓ, . . . , ℓ

]
), with

ℓ =
[
w−1

δ (ckwy)
−1

]⊺
, h = Fθ and h̄ = DDh. Let λ

be the vector of Lagrange multipliers for QP problem (2), and
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DE⊺ = QR, Q =
[
Q1 Q2

]
, R =

[
R̄⊺ 0⊺p

]⊺
, where Q is

an orthogonal matrix, Q⊺Q = Im, Q1 ∈ Rp×p, Q2 ∈ Rp×p,
and R̄ ∈ Rp×p is an upper triangular matrix. Then the optimal
pair (z∗, λ∗) can be derived by solving the system of equations

R̄
⊺
R̄λ∗ = Eh̄+ e

z∗ = DD(E
⊺
λ∗ − h)

(3)

Computing (z∗, λ∗) from system (3) can be seen as solving
directly the Karush–Kuhn–Tucker (KKT) system with a Schur
complement method based on QR-factorization and pivoting
on H . The Schur method is rarely applied in practice, because
it requires the nonsingularity of H , and it is generically hard
to compute, unless H−1 is known, or the numbers of rows of
E is small. However, the structure of the present QP problem
makes H−1 easy to compute.

The throughput for computing z∗ with (3) is dominated by
the QR factorization of DE⊺. Thus, we have developed a new
factorization algorithm (QRFO) tailored for computing R̄ under
the assumption of the sparsity pattern of E (not reported here
for brevity). We based our method on Givens rotations, which
are efficient at zeroing specific elements below the diagonal
of a given matrix [3]. The total amount of FLOPs required
by QRFO is 5p+10(p−1)+max(0, 6(p−2)). The total amount
of FLOPs required by MPCFO for solving (3) is p2+27p+6.

IV. EXPERIMENTAL RESULTS

The algorithm is tested on a C2000 Delfino Micro-
Controller Unit (MCU) LAUNCHXL-F28379D (200 MHz
clock frequency), paired with a Buck Converter BoosterPack
BOOSTXL-BUCKCONV by Texas InstrumentsTM. We set
wy = 1, wδ = 0.5, λk = 0.975, and p = 6 in the MPCFO.
We compare the performances of MPCFO with the low-level
controller (without MPCFO), that is a PI controller for voltage
mode control whose default (pre-tuned) parameters are kept:
Kp = 0.1, Ki = 0.008, 200 kHz sampling frequency, and
[0, 0.6] duty cycle saturation. The sampling frequency for
RLSFO and MPCFO are set to 10 kHz.

In the transient reported in Fig. 2, the device is turned on:
the required voltage is 2 V, while the load is 7Ω. The solid blue
line is the output voltage yk with MPCFO, the yellow dashed
line is the original reference rk, and the orange dashed line
is the reference modified by MPCFO uk. For comparison, the
output voltage without MPCFO is represented by a solid black
line. Fig. 2 also reports the outcome of the RLSFO. The shaded
area highlights the activation of parameter identification. For
t < 0 s, the initial conditions ak = 0, bk = 1 describe a model
with no dynamics. The RLSFO returns its first estimation of
ak and bk after 0.135 ms. The estimation is refined in the
subsequent steps and, consequently, the reference is increased
to speed up the transient. After 1.23 ms, the system is in
steady-state and the identification is turned off because the
persistent excitation condition is not met. Using the MPCFO,
the rise time is reduced by 58.8% and the IAE is reduced
by 24.8%, while the overshoot increases from 4.0% to 6.0%.
Fig. 2 also shows the currents using the MPCFO, which result
to be comparable in magnitude to the baseline controller.

Computationally, QRFO massively outperforms popular lin-
ear algebra packages (LAPACK 3.10.0, EIGEN 3.4.0), and
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Fig. 2: Buck converter: switching on.

MPCFO is faster than a tailored condensing routine: the im-
provements are larger than an order of magnitude (detailed
results are here omitted for brevity). To show the performance
of MPCFO, we compare it with an equivalent adaptive RG
using the adaptive MPC functionality of the Model Pre-
dictive Control ToolboxTM from MATLAB®. The compared
algorithms are deployed on the F28379D MCU using the
Embedded Coder. Fig. 3 shows that MPCFO is faster by a
factor starting from 3.6x (for prediction horizon p = 4) to
184x for p = 40. The difference is substantial also in memory
occupancy. With p = 6, we have 0.32 kB for the MPCFO,
and 0.82 kB for the one produced by MATLAB® tools. The
execution in the experimental setup configuration (p = 6)
requires 219 FLOPs and a memory allocation of 33 floats,
allowing the MPCFO to seamlessly run up to 20 kHz with
p = 6 on the F28379D MCU.
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Model-Based Optimal Control of Modular

Multilevel Converters Using Ideal Capacitor

Voltages Reference

Davide Tebaldi and Roberto Zanasi

Abstract—This extended abstract addresses the modeling and
control of modular multilevel converters.

I. INTRODUCTION

Different multilevel converter topologies are available in

the literature, including cascaded H-bridges multilevel con-

verters [1], flying-capacitors multilevel converters [2], and

Modular Multilevel Converters (MMCs) (MMCs) [3]. In this

extended abstract, MMCs in half-bridge configuration are

modeled and controlled using a new cascade topology. The

advantages coming from the new important concept of having

time-varying capacitor voltages [4], that are the harmonic

content and tracking error reduction in the load current, are

then shown and commented in detail.

II. MODELING

The inductive part of the MMC dynamic model is given by:
[

L+La La

La L+La

]

︸ ︷︷ ︸

LL

İL=−

[

R+Ra Ra

Ra R+Ra

]

︸ ︷︷ ︸

AL

[

I1
I2

]

︸︷︷︸

IL

+

[

V1

V2

]

︸︷︷ ︸

VC

+

[

−1
−1

]

︸ ︷︷ ︸

bL

Va.

(1)

The capacitive part of the MMC dynamic model is given by:
[

C1 0

0 C2

]

︸ ︷︷ ︸

Lc

v̇c= −

[

R−1
c1

0

0 R−1
c2

]

︸ ︷︷ ︸

R
−1
c

vc+

[

T1 0

0 −T2

]

︸ ︷︷ ︸

T12

[

I1
I2

]

︸︷︷︸

IL

,

[

V1

V2

]

︸︷︷ ︸

VC

= −TT

12

[

vc1

vc2

]

︸ ︷︷ ︸

vc

−

[

nRd,on 0
0 nRd,on

]

︸ ︷︷ ︸

Rd,on

[

I1
I2

]

︸︷︷︸

IL

+

[

1
−1

]

︸ ︷︷ ︸

dc

Vdc,

C1=diag(C1, · · · , Cn), C2=diag(Cn+1, · · · , C2n),

Rc1 =diag(Rc1 , · · · , Rcn),Rc2 =diag(Rcn+1
, · · · , Rc2n),

vc1=







Vc1

...

Vcn






,vc2=







Vcn+1

...

Vc2n






,T1=







T1

...

Tn






,T2=







Tn+1

...

T2n






.

(2)

The meaning of the parameters and variables in systems (1)-

(2) can be found in [4]-Fig. 1.
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Fig. 1. Results of the first simulation: zoom-in. First subplot: actual and

desired load currents Is and Ĩa. Second subplot: actual and desired average
capacitor voltages Vc1, Vc2 and Vc12des

. Third subplot: switching voltage
V1, filtered voltage V1f

and available levels for voltage V1. Fourth subplot:
switching voltage V2, filtered voltage V2f

and available levels for voltage V2.

III. CONTROL AND SIMULATION

Two simulations have been performed on the complete

MMC model (1)-(2) adopting the system and control param-

eters reported in [4]-Table 1. In the first simulation, the ideal

reference Vc12des computed in [4]-Sec. 3.2.3 is employed,

whereas the second simulation is performed using a constant

reference Vc12des instead, and approximately equal to the min-

imum value which is strictly needed to follow the desired load

current Ĩa during the whole simulation, which is given by the

case IaM = 9 A representing the most demanding situation.

The first simulation results are zoomed-in in Fig. 1. The MCC

is controlled using the cascade architecture proposed in [4],

which is reported in Fig. 2 of this abstract. The amplitude

spectra of the load current in the first and second simulation

are shown in Fig. 3. Fig. 1 shows that: 1) the load current

Is always tracks Ĩa, except for very short transients when



Fig. 2. Proposed cascade control architecture for modular multilevel converters. The light-blue blocks are the discrete-time control blocks, while the magenta
block represents the controlled system.
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Fig. 3. Results of the first and second simulation. Right subplots: amplitude
spectrum of the load current Is at high higher frequencies. Left subplots:
amplitude of the fundamental harmonic of the load current Is.

the amplitude IaM changes; 2) the average capacitor voltages

voltages Vc1 and Vc2 in the converter arms always track the

ideal reference Vc12des . Fig. 1 specifically shows that the

available voltage levels (black characteristics in the figure)

generating voltages V1 and V2 are much closer to each other

whenever IaM is lower. This brings two important advantages:

1) a lower harmonic content in the resulting load current Is;

2) a better tracking of current Is itself, leading to a cleaner

sinusoid. This can be clearly seen from Fig. 3, where the left

subplots show the amplitude of the load current fundamental

harmonic, the asterisks on the right subplots of Fig. 3 show the

amplitude of the load current higher-order harmonics (i.e. at

frequency greater than 50 Hz in the considered case), while the

continuous lines report the average amplitude over the higher-

order harmonics. Fig. 3 shows that: 1) the average amplitude

of the load current spectrum is approximately the same for

both the first and the second simulations when IaM = 9 A

(second subplot), while 2) the average amplitude of the load

current spectrum is significantly reduced in the first simulation

using the ideal capacitor voltages reference when IaM = 1.5
A and IaM = 0.75 A (first and third subplots).

IV. CONCLUSION

In this extended abstract, we addressed the modeling and

the model-based cascade control of MMCs. The new concept

of ideally varying the average capacitor voltages reference in

the converter arms is proposed. Such ideal voltage reference

represents the minimum value which is strictly necessary to

properly track the desired load current while, at the same

time, minimizing the tracking error and the harmonic content

in the generated load current itself. The simulation results

show that the new proposed control architecture allows to

achieve: a) balancing of the capacitor voltages; b) tracking of

the ideal voltage reference for the average capacitor voltages

in order to minimize the tracking error and the harmonic

content in the load current; c) tracking of the desired load and

circulating current profiles. At the same time, the tracking error

and the harmonic content in the load current are minimized,

thus enhancing all the intrinsic main advantages of multilevel

converters.
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Modeling and control of an impacting electromagnetic
actuator via hybrid Lyapunov techniques

Beatrice Zambotti, Yassine Ariba, Frederic Gouaisbaut, Luca Zaccarian

Abstract—We model and control an impacting electromagnetic
actuator using hybrid Lyapunov techniques. The proposed model
accounts for the main magnetic effects and the mechanical stops
inherent in the system’s design, which impose limitations on its
range of motion. Additionally, the objective is to synthesize a
control law with reduced complexity, enabling precise regulation
of the position of the actuator’s moving part. The proposed
control strategies include an LQ-based method for ensuring
local stability and an energy-based backstepping approach for
enhanced performance. An extended version of this abstract can
be found in [1], [2].

I. INTRODUCTION AND MODELING

Electromagnetic actuators are electromechanical devices
that leverage the principles of electromagnetism to convert
electrical energy into mechanical energy. They are recognized
as an efficient technology for high-performance actuation sys-
tems and find widespread application across the industry. How-
ever, electromagnetic actuators exhibit complex and nonlinear
dynamics, which causes the control of these devices to be a
non-trivial task. Moreover, magnetic elements are subject to
various magnetic phenomena, such as magnetic saturation and
flux fringing, that may interfere with the system’s operation.
Our actuator is designed to operate within a limited range
of positions [pmin, pmax], causing impacts with the mechanical
constraints of the structure during operation.

Considering the state variable x = [x1 x2 x3]
T

=

[p ṗ i]
T , with p the position of the moving part and i the

current that flows through the coil, the actuator can be modeled
as a hybrid dynamical system

ẋ =

 x2
1
m (−Fmag(x1, x3)− λx2 − k(x1 − prest)

1
L(x1)

(u−Rx3 − x2x3
dL(x1)
dx1

)

 , x ∈ C

x+ =

[
x1

−κx2
x3

]
, x ∈ D

(1)
where λ is the damping coefficient, k is the stiffness coef-
ficient, prest is the airgap value at the rest position of the
spring, u is the control input voltage, R is the coil’s electrical
resistance, and p 7→ L(p) is the inductance. The flow and
jump set are defined as C := {x : pmin ≤ x1 ≤ pmax} and
D := {x : x1 = pmin, x2 ≤ 0} ∪ {x : x1 = pmax, x2 ≥ 0}.
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II. MAGNETIC FORCE AND INDUCTANCE IDENTIFICATION
FOR CONTROL DESIGN AND VALIDATION

To complete the electromagnetic actuator’s model, two
methods to model the magnetic force and inductance are
presented and are represented in Fig. 1.

A. Magnetic force and inductance model for validation
The magnetic force is parameterized as a polynomial func-

tion of current i and airgap p as

Fmag(p, i) =

[
1
p

]{np}T
M

[
1
i

]{ni}
(2)

where
[
1
x

]{d}
= [1 x x2 ... xd]T . The matrix M ∈

R(np+1)×(ni+1) can be identified based on the measurements
{Fmeas,k}nmeas

1 by solving the following constrained optimiza-
tion problem, with constraints tailored to mimic the physical
behavior of the magnetic force

minimize J =

nmeas∑
k=1

1

F 2
meas,k

(Fmeas,k − Fmag(pk, ik))
2

subject to


Fmag(p, 0) = 0, ∀e ∈ [0, pmax]
∂Fmag(p,i)

∂i > 0, ∀e ∈ (0, pmax], i ∈ (0, imax]
∂Fmag(p,i)

∂p < 0, ∀e ∈ (0, pmax], i ∈ (0, imax]
(3)

The inductance p 7→ L(p), is modeled as in [3] as a series
of reluctances and can be expressed as

L(p) =
N2

ρxp+ ρ0
(4)

where N is the number of coil windings, ρx is the overall
airgap reluctance, and ρ0 is the overall magnetic circuit
reluctance.

B. Magnetic force and inductance model for control design
As visible in Fig. 1, the magnetic force assumes a linear

behavior with respect to the current after reaching an airgap-
dependent saturation limit. Consequently, we may identify
a linear component Flin = si, where the identified slope s
assumes a common value for every different airgap. To focus
on the saturation-like characteristics of the force, such a linear
component Flin(i) can be subtracted from the overall measured
force, resulting in Fsat(p, i) = Fmeas(p, i) − Flin(i). Then we
may fit the theoretical model of the magnetic force

Fmag,th(p, i) = −1

2
i2ψ(p). (5)

ψ(p) represents the derivative of the inductance as a function
of the airgap and needs to be identified. Exploiting the
derivative of expression (4), a fitting for the function ψ(p)
in (5) was performed by optimizing the selection of q1, q2



2

Fig. 1: Top: models for the inductance. Middle: models for the derivative of
the inductance. Bottom left: comparison between measured data and magnetic
force model for validation. Bottom right: comparison between measured data
(dashed line) and magnetic force model for control design (solid line).

and q3 in the expression ψ(p) = − q1
(q2p+q3)2

. By integrating
ψ(p) it is possible to derive the expression for the inductance

L(p) =
q1

q2(q2p+ q3)
+ c. (6)

By combining the discussed components, we obtain the
complete magnetic force model

Fmag(p, i) = fmax(p)tanh
(
−1

2
i2

ψ(p)

fmax(p)

)
+ si, (7)

where fmax(p) characterizes the transition between the satu-
rated and the unsaturated regions and is the following function
of the airgap fmax(p) = z1e

z2p+z3e
z4p, for suitable parameters

z1, z2, z3, z4.

III. CONTROL DESIGN

For each equilibrium x⋆ = [x⋆1, x
⋆
3, x

⋆
3], we define here the

error coordinates e1 = x1 − x⋆1, e2 = x2 − x⋆2, e3 = x3 − x⋆3,
v = u − u⋆ and and derive in this section control laws that
ensure asymptotic stability of the origin of the hybrid system

ė =


e2

1
m ( 12 (e3 + x⋆3)

2ψ(x1)− s(e3 + x⋆3)
−λe2 − k(e1 + x⋆1 − prest))

1
L(x1)

(v −Re3 − e2(e3 + x⋆3)ψ(x1))

 , e+ x⋆ ∈ C

e+ =

[
e1

−κe2
e3

]
= AJe :=

[
1 0 0
0 −κ 0
0 0 1

]
e, e+ x⋆ ∈ D

(8)

A. LQ linearization-based control design
A first solution to locally asymptotically stabilize the origin

of the hybrid error dynamics (8) is given here by following
the intuitive approach of ensuring a quadratic Lyapunov de-
crease along a linearization of the flow dynamics in (8) and
across the jump dynamics in (8), which is already linear. The
corresponding hybrid dynamics is

ė = Ae+Bv, e+ x⋆ ∈ C (9a)
e+ = AJe, e+ x⋆ ∈ D (9b)

where A =

 0 1 0
1

2mx
⋆2
3

∂ψ(x⋆1)

∂e1
− k
m − λ

m
1
mx

⋆
3ψ(x

⋆
1)− s

m

0 − x⋆3ψ(x⋆1)

L(x⋆1)
− R
L(x⋆1)

 and

B =

[
0
0
1

L(x⋆1)

]
. For the linearized dynamics (9), we design an

LQ-based linear state feedback stabilizer as v = Ke, where the
gain K is optimally selected by solving the following convex
optimization, where Q > 0 and R > 0 are tuning parameters
to be selected by the user,

max
β,W,X

β, subject to (10)

W :=

[
w11 0 w13

0 w22 0
w13 0 w33

]
≥ βI > 0He(AW +BX) WT XT

W −Q−1 0
X 0 −R−1

 < 0

and then choosing K = XW−1. Due to the block di-
agonal structure of W in (10), the closed-loop dynamics
ensures local decrease along flows of the Lyapunov function
Vℓ(e) = eTW−1e, non-increase across jumps (impacts), and
the following upper bound β−1 on the LQ performance index:

J =

∫ ∞

0

e(t)TQe(t) + v(t)TRv(t)dt ≤ β−1|e(0)|2. (11)

Theorem 1 For any Q = QT > 0 ∈ Rnxn and R = RT > 0
∈ Rmxm, assume that there exist matrices W = WT > 0
∈ Rnxn, X ∈ Rmxn, and a scalar β satisfying (10). Then,
with the selection K = XW−1 ∈ Rmxn, the control law
v = Ke is such that the Lyapunov function Vℓ(e) := eTPe,
with P =W−1, satisfies the decrease conditions

V̇ℓ(e) < 0 ∀e ∈ R3 \ {0}, (12)
Vℓ(e

+)− Vℓ(e) ≤ 0 ∀e ∈ R3, (13)

along the linearized dynamics (9). Moreover, bound (11) holds
locally around the origin e = 0. In particular, the origin of
(9) is locally asymptotically stable.

B. Energy-based backstepping design
To enlarge the closed-loop’s basin of attraction, we also

propose a nonlinear control strategy based on a backstepping
approach. This method stabilizes the origin for (8) by first
stabilizing the mechanical subsystem with a fictitious control

law e3,d =
s−

√
s2+2k(x⋆1−prest)ψ(x1)

ψ(x1)
− x⋆3. Subsequently, the

overall system is stabilized using the control input voltage
v, which is selected by way of the energy-based Lyapunov
function V (e) = 1

2ke
2
1 +

1
2me

2
2 +

1
2L(x1)(e3 − e3,d)

2.

Theorem 2 Given any α > 0, the control law v = Re3+se2+
L(x1)ė3,d−α(e3− e3,d), ensures local asymptotic stability of
the origin of the hybrid system (8).

Simulation results are not included but can be found in [1].
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PWM-Based Energy-Efficient Adaptive Control for
Multi-Chamber Hydraulic Servo Actuators

Augusto Bozza1, Graziana Cavone2, Raffaele Carli1, and Mariagrazia Dotoli1 .

Abstract—Pulse Width Modulation (PWM)-based multi-
chamber Hydraulic Servo Actuators (HSAs) are highly efficient
actuators for which it is possible a precise control of flow-rates
and pressures. However, their modeling and control is not trivial
due to the complexity introduced by the exponential increase in
force combinations and their hybrid behaviour. This research
work [1], on the one hand, extends the Average Equivalent
Discrete-time Model (AEDM) of [2] to the mechanical dynamics,
relating the valves duty-cycle with chamber pressures and piston
force. On the other hand, it presents an adaptive control, com-
bining a Decoupled Proportional-Integral (DPI) controller with
a Model Reference Adaptive Control (MRAC) for an effective
force tracking and pressure control, offering a better-performing
alternative to existing methods.

I. INTRODUCTION

PWM-based HSAs are widely popular in industrial appli-
cations (e.g., hydraulic machines [3]) for their high force and
torque with a compact size-to-power ratio, having a reduced
number of switching valves. Multi-chamber HSAs enhance
the force resolution by using cylinders with more than two
chambers, offering nN force modes based on the number of
chambers N and pressure lines n [4]. However, their complex
structure, sensitivity, high costs, and hybrid nature pose chal-
lenges for advanced modelling and control approaches [5]. In
contrast to analogical systems, few examples of adaptive and
robust control techniques are given for digital HSAs in the
related literature. Conversely, in this research work [1], we
first extend the AEDM proposed in [2] also to mechanics.
Second, we propose a two-level adaptive control architecture,
involving an outer DPI controller for the force tracking, and an
inner nonlinear discrete-time MRAC for the pressure control
of each chamber.

II. RESEARCH CONTRIBUTIONS

The extended AEDM [2] proposed here to represent the
PWM-based multi-chamber HSA is formulated as follows:

vk+1 = vk +
1

M

(
−bmvk −

N∑
i = 1

(−1)iAcipi,k

)
T

yk+1 = yk−
(
bmvk −

N∑
i=1

(−1)iAcipi,k

)
T

pi,k+1 = ai,k fi,d(pi,k) + bi,k gi,d(pi,k)d
+
i,k + ωi,k

(1a)

(1b)

(1c)
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Fig. 1. Block diagram of the proposed adaptive control architecture. In gray
the digital multi-chamber HSA, while in red the decentralized MRAC-based
low-level controller.

with:

fi,d(pi,k) = −
√∣∣pi,k−Pt

∣∣ (2a)

gi,d(pi,k) =
√∣∣Ps−pi,k

∣∣+√∣∣pi,k−Pt

∣∣ (2b)

ai,k = bi,k =
EΦi

V i,k

(2c)

Φi = AsiCd,i

√
2

ρ
(2d)

ωi,k = (−1)iAcivk (2e)

where eqs. (1c) and (2a)-(2e) are valid ∀i = 1, . . . ,N.
Eqs. (1a)-(1b) describe the mechanical behavior of the piston
rod, while (1c) represents the hydraulic dynamics, where the
duty-cycle d+i,k acts as input, fi,d(·) and gi,d(·) respectively
stand for the nonlinear state and input functions, v and y
respectively for the rod velocity and force, and pi for the i-th
chamber pressure. Parameters such as mass piston (M), total
rod length (L), chamber area (Aci ), valve cross-sectional area
(Asi ), valve discharge coefficient (Cd,i), viscous coefficient
(bm), oil density (ρ), fluid compressibility (E), sampling time
T, supply pressure Ps, and venting pressure Pt are constant.
Chamber volume Vi,k, the unknown parameters ai,k and bi,k,
and disturbance ωi,k change over time.

The control framework (Fig. 1) uses a DPI-based controller
to decouple the force error into N components, determining
the reference pressure signals for each chamber. Then, the
N MRAC-based controllers provide the valves’ duty-cycle to
correctly track these pressures in each chamber.

The MRAC designed for the i-th plant eqs. (1c)-(2), con-
siders the parameters ai,k and bi,k as unknown, and uses the
following reference model for tracking the pressure:

p m
i,k+1 = −ami p

m
i,k + bmi p

ref
i,k , ∀i = 1, . . . ,N

where p m
i,k , ami , and bmi are respectively the model reference

pressure, and the model state and input parameters, while p ref
i,k



Fig. 2. Closed-loop simulation - Pressure tracking for chamber 1 (a1), chamber 2 (a2), chamber 3 (a3), and chamber 4 (a4) and corresponding relative
percentage error respectively obtained for chamber 1 (b1), chamber 2 (b2), chamber 3 (b3), and chamber 4 (b4) over 15 s of simulation time window.

Fig. 3. Closed-loop simulation - Force tracking (a) and corresponding relative
percentage error (b) over 15 s of simulation time window.

is the desired pressure for the relative chamber. The proposed
control law is:

ui,k = 1
gi,d(pi,k)

ϕ⊤
i,kθ̂i,k, ∀i = 1, . . . ,N (3)

where ϕi,k is the regressors vector and θ̂i,k is the estimated
parameters vector of the unknown controller gains vector θ∗

i,k:

ϕi,k =
(
fi,d(pi,k), pi,k, p ref

i,k , ωi,k

)⊤

θ̂i,k =
(
θ̂i1,k, θ̂i2,k, θ̂i3,k, θ̂i4,k

)⊤ , ∀i = 1, . . . ,N.

Thus, the following Lyapunov-based discrete-time adaptive
law is proposed to estimate θ̂i,k:

θ̂i,k+1 = θ̂i,k − γiϕ
⊤
i,ke

P
i,kT, ∀i = 1, . . . ,N, (4)

where ePi,k = pi,k − p∗i,k is the pressure tracking error at time
tk and γi is the adaptive gains vector, defined as follows:

γi =
(
γi1 , γi2 , γi3 , γi4

)⊤
, with γil > 0

∀i=1, . . . ,N,∀l=1, . . . , 4, with l∈N.
Finally, the i-th control law (3), updated via (4), is normal-

ized as follows to achieve the related duty-cycle d+i,k:

d+i,k =
ui,k − qi,min

qi,max − qi,min
, ∀i = 1, . . . ,N, (5)

where qi,min and qi,max are respectively the minimum and the
maximum allowable flow-rates for the i-th chamber.

III. CASE STUDY

The proposed approach is applied to a four-chamber digital
HSA with eight ON-OFF valves used as the core part of a
real excavator presented in [6], the most recent and innovative
paper in this field, where Model Predictive Control is applied
for the system control. The results for the pressure and force
tracking are respectively shown in Fig.s 2 and 3. Compared to
the results in [6], our approach improves the energy efficiency
by 7.6%, albeit the force peak error goes beyond by 0.45%.
Notably, our control approach significantly streamlines the
cascaded control-loop proposed by the benchmark, reducing
the computational time required for evaluating the control law.

IV. CONCLUSIONS AND FUTURE WORKS

In this work, we extend the AEDM for PWM-based multi-
chamber HSAs of [2] also to their mechanics. Then, we
introduce a novel adaptive control architecture for tracking
the force and pressure, using a decentralized MRAC scheme
that addresses the HSA nonlinearities and uncertainties. Albeit
the force peak error is comparable to [6], we significantly
improve the energy efficiency and we streamline the control
architecture. Future works will regard multi-pressure HSAs
and robust MRAC schemes.

REFERENCES

[1] A. Bozza, G. Cavone, R. Carli, and M. Dotoli, “Pwm-based energy-
efficient adaptive control for multi-chamber hydraulic servo actuators,”
IEEE Transactions on Control Systems Technology, (Under submission).

[2] ——, “A power electronic converters-inspired approach for modeling
pwm switched-based nonlinear hydraulic servo actuators,” in 2023 IEEE
International Conference on Systems, Man, and Cybernetics (SMC).
IEEE, 2023, pp. 2477–2482.

[3] G. Cavone, A. Bozza, R. Carli, and M. Dotoli, “Mpc-based process
control of deep drawing: An industry 4.0 case study in automotive,” IEEE
Transactions on Automation Science and Engineering, vol. 19, no. 3, pp.
1586–1598, 2022.
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Exploiting the potential of hybrid batteries in racing:
optimal sizing and energy management
Stefano Radrizzani, Giorgio Riva, Giulio Panzani, Matteo Corno, Sergio M. Savaresi

Abstract—The electrification trend is spreading not only in the
field of traditional vehicles, but also in the racing one, pushing
towards the design of dedicated energy storage systems to cope
with high demanding requirements, as witnessed by the next
generation of Formula E that will increase power up to 600
kW. In this scenario, Hybrid Battery Packs (HBPs) raise up
to an interesting solution thanks to their combined high-power
and high-energy features. In this report, firstly, we showcase the
potential benefits of hybrid battery packs, compared to single
chemistry ones, when employed in a racing scenario. To this
aim, we formulate a co-design optimization problem (Co-OP) to
find the optimal hybrid battery pack configuration minimizing
the race time. As a byproduct of the solution, the optimal
power split between the two energy sources is obtained as an
implicit control law. From this result, we address the problem
of designing a real-time, explicit, energy management strategy
(EMS) for the application. In this respect, we devise a modified
co-design optimization problem, where explicit power split logic
can be directly included, allowing to compare and rank them
with respect to the optimal implicit one, considering as a case
study the Formula E Gen 3 car in the 2021 Rome Formula E
ePrix.

I. INTRODUCTION

VEHICLE electrification is one of the most important
trends not only in the mass-market automotive, as wit-

nessed by the growth of the full-electric Formula E racing
competition. For electric racing vehicles, the performance is
intimately related to the architecture and size of the powertrain,
especially regarding the battery pack. Toward this aim, in
our first work [1], a co-design approach has been applied
to the full-electric racing scenario with a traditional battery
pack. With respect to sizing problems for traditional vehicles,
the driving-cycle is not known a priori, and, therefore, the
minimum race time (MRT) framework represents the building
block to formulate a co-design optimization problem (Co-OP).
The Co-OP proposed in [1] chooses, through an external layer,
the optimal cell technology and the battery pack size; while
an internal layer optimizes both battery usage and mechanical
braking, while being compliant with the battery power limits.
The mathematical structure and properties of the Co-OP, as a
function of the battery model, are deeply discussed in [2].

Given the ambitious goal of Formula E to deliver power
requests up to 600 kW, we delved into the analysis of a
promising architecture, i.e., hybrid battery packs (H-BPs).
Indeed, they are made up of two different cell chemistries
sharing complementary characteristics, which cannot be si-
multaneously matched by a single cell technology, allowing to

The authors are with Dipartimento di Elettronica, Informazionee Bioingeg-
neria, Politecnico di Milano, Via G. Ponzio 34/5, 20133, Milan, Italy.

potentially satisfy both the high power and mileage require-
ments of incoming racing competitions. In order to analyze the
potential of H-BPs in this scenario, we extended in [3] the two-
layered Co-OP formulated in [1] to a three-layered solution
where also the couple of Li-ion cells is optimized, showing
that H-BPs can be a promising concept for the racing scenario.
Leveraging this result, in [4] we shifted the focus to the design
of suitable energy management strategies (EMS) for the H-BP,
which can be implemented in real-time applications [4] to split
the power between the two sources. To this purpose, we build
upon the optimization framework in [3] to account for explicit
power split strategies, showing that the well-known Equivalent
Consumption Minimization Strategy (ECMS) represents the
best solution also in this scenario.

In the following, the optimal sizing and energy management
is recalled in Section II, before showing the results in Section
III, considering as a case study the Formula E Gen 3 car in
the 2021 Rome Formula E ePrix.

II. OPTIMAL SIZING AND ENERGY MANAGEMENT

The optimal sizing Co-OP employs a space-reformulation
of vehicle and battery dynamics to optimize the overall race
time along a circuit. Reminding that a rigorous and complete
formulation is available in [3], we report here a lighter version
to enhance readability for the upcoming discussion:

min race time

s.t. vehicle dynamics & friction limits

batteries dynamics & limits

battery pack-vehicle coupling.

(1)

In more detail, batteries and vehicle dynamics are modeled
respectively through a static Equivalent Circuit Model (ECM)
and a point-mass model moving on a fixed raceline, where the
friction limit allows for linking and constraining longitudinal
and lateral dynamics. Given the objective of the work, the
coupling between the battery pack and vehicle is simplified
via a constant average efficiency including electric motors and
power-electronics devices. Finally, the batteries limits prevent
State-of-Charge (SoC), current, and voltage from overcoming
safety boundaries, and constrain the total power at the ter-
minals to comply with possible limitations enforced by racing
regulations. Moreover, the battery cell technology must belong
to the dataset in [3], which associates for any energy density
the most power dense technology.

In such a formulation, as in [3], no explicit EMS has been
imposed, yet, meaning that an implicit control law for the
optimal power split between the two sources in the battery
pack is derived as a byproduct of the Co-OP.



2

The EMS is introduced in [4] as an additional constraint in
the optimization problem (1), imposing one of the two battery
powers, e.g., Pb,1, to satisfy the explicit EMS policy fEMS:

Pb,1 = fEMS (Pb, . . . ) , (2)

where Pb is the delivered battery power, and Pb,2 is con-
strained to satisfy Pb,2 = Pb − Pb,1.

Specifically, two different energy management strategies
have been tested: the first one is an heuristics based on
a complementary filter (CF) strategy, and the other one is
optimization-based, employing the equivalent consumption
minimization strategy (ECMS).

CF. In [4] we consider a first-order low-pass filter param-
eterized by a fixed filter frequency flp. Given the dynamic
nature of the low-pass filter, an additional state variable is
added to the optimization dynamical model. We define Pb,lp

as the low-pass filtered version of the total battery power Pb,
whose dynamic equation in space-domain, i.e., along the path-
abscissa s, is obtained:

dPb,lp

ds
=

1

v
(−2πflpPb,lp + 2πflpPb) and Pb,1 = Pb,lp,

(3)
where v is the vehicle speed, and recalling that the battery
operating limits are already included in (1), and flp is another
optimization variable.

ECMS. In the ECMS framework, the power split is the
result of an optimization problem, aiming at minimizing the
weighted (through the equivalence factor λ) sum of the current
power consumption Pbc,i of each battery i = 1, 2:

Pb,1 = argminPbc,1 + λPbc,2, (4)

while satisfying the driver’s power request Pb and subject to
the battery operating limits. The outcome of this problem is
not an explicit function, hence, to be included as a constraint
in the optimization problem (1), the solution is approximated
in [4] by a Feed-Forward Neural Network (FFNN):

Pb,1 = fffnn (Pb,SoC1,SoC2, λ) . (5)

III. CASE STUDY: GEN3 FORMULA E

The case study in this section considers the Gen3 Formula
E and the 23 laps Rome 2021 ePrix, which is common
to both reported works [3] and [4]. First of all, the best
chemistry selection has been found in [3] without imposing
any specific EMS. Results, in Fig. 1, show that to fully exploit
the potential of H-BPs, the most energy dense technology
(Kokam SLPB065) is coupled with the most power dense
one (Saft VL5U). Instead, in single chemistry battery packs,
the power-energy trade-off is handled placing somewhere in
between (Sony Murata VTC5A). Focusing on the race time,
reported in TABLE I, a significant advantage of 2.22 seconds
per lap is visible. One of the main reasons of this results is
the lightness of the H-BP, which weights 151 kg less than the
optimal single chemistry one. Fixing the cell technologies,
the optimal tuning of the EMS has been carried out in [4]. As
shown in Fig. 2, ECMS reaches results close to the optimal
implicit solution, in terms of battery weight and race time,
gaining 2.17 seconds per lap. The optimal tuning of the ECMS

Kokam

SLPB065

Saft

VL5U

SonyMurata

VTC5A

Fig. 1: Optimal cell technology selection for single and hybrid battery packs.

Fig. 2: Comparison of single and hybrid solutions with different EMSs.

TABLE I: Results

cell average gain
technology EMS weight lap time per lap

single - 390.6 kg 98.46 s -
hybrid - 239.6 kg 96.24 s 2.22 s
hybrid ECMS (λ = 0.98) 239.6 kg 96.29 s 2.17 s
hybrid CF (flp = 10−5) 273.4 kg 96.72 s 1.74 s

is λ = 0.98, meaning that the two battery power consumption
are equally weighted in (4). CF, instead, stands as a viable
simple heuristic approach, paying with a heavier battery pack
and slower solutions, but still gaining 1.74 seconds per lap.
The optimal tuning of the CF is flp = 10−5 Hz, meaning that
the high-energy battery drains a power current during the race
and the high-power one handles the power peaks requests.

IV. FUTURE WORKS

In these report, the potential advantages of hybrid battery
packs in electric racing car have been shown. To further going
on with a real employment of such a solution, further analyses
on the electrical connections and consequences on the sizing
and EMS will be investigated.
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EXTENDED ABSTRACT
Energy Management System Based on Model Predictive Control

for Battery-Powered Trains Under Catenary-Free Conditions

Alessio La Bella, Gian Paolo Incremona, Aline Cristiane Buzzi and Patrizio Colaneri

Abstract—This work contributes to the railway field by propos-
ing a novel energy management approach based on model
predictive control (MPC) to provide a more efficient govern of
the electric equipment inside trains. Specifically, the proposed
MPC is capable of addressing the challenging scenario of par-
tially catenary-free tracks for trains equipped with batteries. In
particular, the MPC optimizes the current flows to supply the
traction motors and the parallel-connected auxiliary loads, while
reducing the amount of losses over the electric lines.

I. INTRODUCTION

Railway systems are nowadays recognized as highly effi-
cient means of transportation due to their limited environmen-
tal impact. Furthermore, over the years different sustainable
solutions have been proposed for energy management and
losses reduction [1].

In fact, apart from eco-driving solutions (see e.g., [2]),
another instrumental aspect for train energy efficiency is
the power control to supply auxiliary services (e.g., heating,
cooling or lightning). Centralized converter architectures are
typically used, although they are not very efficient, often re-
quiring expensive and bulky voltage source converters (VSCs).
An efficient alternative is therefore that of parallel-connected
converters to power distribution in railway vehicles in order
to minimize the current through the auxiliary services and
traction motors, hence achieving load sharing and losses
reduction. In the literature, conventional control solutions in
this context adopt droop-control strategies [3], [4], but the
recent paradigm consisting of catenary-free scenarios makes
the introduction of optimal control approaches more suitable.

The main goal of this work is to propose a novel optimal-
based energy management system for regulating the train
internal electric resources, thus maximizing its efficiency.
Specifically, a MPC is designed taking into account the time-
varying catenary supply, and thus coordinating in advance
the battery charge based on the knowledge of the future
track characteristics. The proposed MPC plays the role of a
high-level controller to provide voltage and current references
tracked by suitable low-level controllers. As a beneficial effect,
the proposed MPC enables high energy savings in terms of
active power losses reduction, and a proper management of the
batteries state of charge, e.g., exploiting regenerative braking.
The proposed strategy is finally applied to a realistic case study
relying on data provided by Alstom rail transport.

Alessio La Bella, Gian Paolo Incremona and Patrizio Colaneri
are with Dipartimento di Elettronica, Informazione e Bioingegne-
ria, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133
Milan, Italy ({alessio.labella, gianpaolo.incremona,
patrizio.colaneri}@polimi.it). Aline Cristiane Buzzi is with
Alstom SESTO, Via Fosse Ardeatine, 120, 20099 Sesto San Giovanni, Milan,
Italy (e-mail: aline-cristiane.buzzi@alstomgroup.com).

II. MODELLING AND PROBLEM STATEMENT

The schematic representation of the electric components of
the ith train carriage is that in Fig. 1.
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Fig. 1: Single line electric diagram for a single carriage with
battery and traction motor on the DC-network, and auxiliary
load on the AC-network.

The dynamic model of the system, omitted for the sake of
brevity, can be achieved by applying the Kirchhoff’s voltage
and current laws to the illustrated electrical scheme (see [5]
for the details) and it consists of the DC-network, drive-train,
auxiliary loads AC-networks and batteries, whose state of
charge is given by

SoC[i](t) = SoC[i](0) + E[i]
c

∫ t

0

I
[i]
c (z)

c
[i]
c

dz

with c
[i]
c being the battery capacity. As described in [5],

a DC/DC converter interfaces the DC-link with the battery
internal circuit, as well as a VSC does the same for the AC
auxiliary loads, while the traction circuit is simplified as a
current generator capable of sending current through the DC-
link if the train brakes. All the carriages are then connected to
the following and preceding ones via DC- and AC network
impedances. Moreover, we assume to have some “buggy”
carriage i.e., without traction motors.

Now, considering variables in Fig. 1 and all the dynamic
equations and algebraic equations of the system, letting

x[i]=[I
[i]
DCb, I

[i]
DCa, I

[i]
DCt, I

[i]
DCℓ, I

[i]
d , I [i]q , V

[i]
Cd, V

[i]
Cq, I

[i]
ℓd , I

[i]
ℓq ]

′,

u[i]=[V
[i]

b , V [i]
a , V

[i]
t , V

[i]
DC, V

[i]
c , I [i]c , V

[i]
d , V [i]

q ]′ ,

d[i]=[V0, I
[i]
T , I

[i]
Ld, I

[i]
Lq]

′ ,



one can write the model in a compact way as

ẋ[i] = f(x[i], u[i], d[i]), (1a)

g(x[i], u[i], d[i]) = 0 , (1b)

where f(·) and g(·) are properly defined vector functions.
Moreover, all train electric variables must be constrained
within their physical limits, implying that

x[i] ≤ x[i] ≤ x̄[i], (2a)

u[i] ≤ u[i] ≤ ū[i]. (2b)

The control objective is to design an MPC-based manage-
ment system for the electric devices of the train. Such an MPC
will play the role of a high-level controller capable of gener-
ating voltage or current references to low-level regulators.

III. MPC-BASED ENERGY MANAGEMENT SYSTEM

Considering an MPC running at slower rate, and, given
the train circuit dynamics, the latter is included as static in
the MPC problem formulation, since electric transients are
typically much faster than the MPC sampling time, namely
τs ∈ R. Hence, (1a) is included in the MPC at its equilibrium,
i.e., f(x[i], u[i], d[i]) = 0.

Then, suitably discretizing the model, with t = kτs ∈
R, where k ∈ N≥0, let the prediction horizon be Tk :=
{k, . . . , k+N −1), with the integer N ≥ 1 being the horizon
length, while the ith SoC dynamics becomes

SoC[i](k + 1) = SoC[i](k) +
E

[i]
c I

[i]
c (k)

c
[i]
c

τs

subject to
SoC[i] ≤ SoC[i](k) ≤ SoC

[i]
,

where 0 ≤ SoC[i] < SoC
[i] ≤ 1. Moreover the MPC is

designed to accomplish the following goals:
1) batteries should work with SoC higher than a pre-

defined threshold SoCth (e.g., 50%) so as to ensure that
a sufficient charge is available in case of catenary-free
sections of the track, i.e., SoC[i](k) ≥ SoCth−∆s[i](k),
where ∆s[i] ≥ 0 is a slack variable;

2) when the traction current I [i]T < 0, i.e., in case of regen-
erative braking, the recovered energy must be charged
in batteries instead of being injected in the catenary
grid. Therefore, it is imposed that I [0]DCℓ(k) ≥ −∆Icat(k),
where I

[0]
DCℓ is the current absorbed by the catenary,

whereas ∆Icat ≥ 0 is a slack variable;
3) power losses, compactly indicated as

Ploss(k) =
n∑

i=1

I [i](k)′ R[i] I [i](k) ,

must be minimized, while transferring energy from/to
batteries to/from carriages.

Hence, given the previous objectives, the following MPC
optimization problem is solved at each t = kτs, i.e.,

min
u(·)

k+N−1∑
h=k

Ploss(h) + γcat∆Icat(h)
2 + γs

n∑
i=1

∆s[i](h)2,

subject to (1), (2), ∀h ∈ Tk,

with γcat > 0 and γs > 0 being properly defined weights.

IV. CASE STUDY

The proposal has been assessed in simulation making ref-
erence to a regional train with n = 4 carriages moving over
a track with two stops. The first and the fourth carriages are
equipped with both batteries and traction motors, while the
other two are “buggy” carriages. In the considered scenario
we assume that the train crosses a catenary-free section of the
track in the interval t ∈ [80, 140]min. The train parameters
and motor current required by the train or regenerated during
braking have been provided by Alstom rail transport, while all
the MPC setting can be found in [5].

Fig. 2: SoC profiles for the batteries on carriages 1 and 4 (left)
and profiles of battery current I [i]DCb, i = 1, 4 (right)

Fig. 2 shows that from an initial SoC equal to 0.8, both
SoCs (i = 1, 4) decrease but with different rate by virtue
of the minimization of losses operated by the MPC, and at
50min, both batteries are charged since the MPC foresees a
catenary-free section of the track. The same figure shows the
time evolution of the battery currents I

[i]
DCb, i = 1, 4, where

one can observe that, in order to minimize losses, MPC makes
the batteries supply part of the traction and load, while they
are charged when the train brakes. The computation of the
total energy losses amounts to 0.78 kWh, compared with an
heuristic control strategy for which losses are 1.58 kWh, i.e.,
a 50.7% power saving is obtained using the proposal.

V. CONCLUSIONS

In this work, a novel MPC strategy to address the energy-
management problem for trains, equipped with parallel-
connected auxiliary loads, traction motors and batteries, is pro-
posed. We have designed a promising sustainable solution for
real time implementation, also capable of efficiently governing
the batteries in the case of partial catenary-free scenarios.
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Optimizing electric vehicles charging through
smart energy allocation and cost-saving
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In light of the pressing need for sustainable energy solutions to combat the environmental crisis,
this paper addresses the challenges associated with integrating electric vehicles (EVs) into daily life,
specifically focusing on the optimization of EV charging stations. While much of the existing literature
emphasizes the impact of EVs on the power grid and the importance of reducing grid strain through
data-driven models and off-peak charging strategies [1], our approach diverges by concentrating on op-
timizing a single charging station in a business perspective. Smart Charging, which employs advanced
technologies and algorithms to optimize charging station usage, is central to our study, aiming to enhance
efficiency, reduce costs, and minimize grid strain [2].

Our research1 introduces a mathematical optimization model formulated as a Linear Programming
problem to optimize the decision-making processes within a charging station from a business perspec-
tive. This model seeks to maximize operational efficiency and minimize costs by determining which
vehicles to charge, for how long, and the power allocation for each EV. Differently to other optimization
frameworks [3], we also incorporate a Robust Optimization approach to manage real-world uncertain-
ties, such as fluctuating electricity prices and varying energy demands [4]. The significant cost-saving
potential of our model, particularly as the number of EVs increases, is demonstrated in our results, high-
lighting the contribution of this innovative approach to the development of Smart Charging solutions for
the future of transportation.

p∗ = min
Y

:
T∑
t=1

πt

(
1 + y0t

)
·

∑
i:t∈[ai,di]

Yti


s.t.

di∑
t=ai

Yti ≥ Li, i = 1, . . . , N

N∑
i=1

Yti ≤ Ct, t = 1, . . . , T

0 ≤ Yti ≤ st, t = 1, . . . , T, i = 1, . . . , N.

The optimization model considers the following variables and parameters: πt (linear energy cost at
time t), y0 (a T-dimensional vector representing systematic energy waste during the charging process),
L (load vector representing required energy demand for each vehicle divided by the time step length
∆), (ai, di) (arrival and departure times for each vehicle), Ct (maximum power generated by the station
at time t), and st (maximum power generated by a single charging socket), assuming reasonably fixed

1This paper has been presented at ESCC 2024 - 11th International Conference on Energy, Sustainability and Climate
Crisis, August 26 - 30, 2024, Corfu, Greece. This paper is based upon work supported by Vin University under Grant
No. VUNI.2223.FT08. Furthermore, Luca Ambrosino is supported by the he FAIR - Future Artificial Intelligence Research
and received funding from the European Union Next-Generation EU (PIANO NAZIONALE DI RIPRESA E RESILIENZA
(PNRR) – MISSIONE 4 COMPONENTE 2, INVESTIMENTO 1.3 – D.D. 1555 11/10/2022, PE00000013).
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values for C and s in simulations. The mathematical optimization model has been tested across 730
scenarios demonstrated an average cost saving of 9% compared to a standard algorithm. The model also
offers flexibility for robust optimization, handling uncertainties in input parameters effectively.

Figure 1: Three different ways to visualize the results

Furthermore, we adopted a robust strategy with respect to the electricity prices and the load vector
uncertainties. The first idea to deal with energy demand is to implement the interval uncertainty, by
substituting in the constraint the Li with its worst case/upper bound L̄i. For what concerns the electricity
prices, we implement the norm-bounded uncertainty in the objective functions by assuming that π is
known up to a sphere ||π − π̂||2 ≤ ρ, where the nominal cost π ∈ RT and the uncertainty level ρ ≥ 0
are known. In matrix form, the robust counterpart of the mathematical optimization model becomes a
Second Order Cone Programming problem (SOCP) of the form:

p∗ = min
Y

:πt

(
diag(AY T ) + y0t · diag(AY T )

)
+ ρ · ||diag(AY T ) + y0t · diag(AY T )||2

s.t. diag(ATY ) ≥ L̄

diag(AY T ) ≤ C

0 ≤ Y ≤ s.

Future improvements include incorporating profitability into the objective function to handle variable
electricity prices and extended charging discounts. As the EV market grows, adding constraints on the
solution’s cardinality and using constraint relaxation techniques could manage computational complex-
ity. Additionally, considering a network of charging stations instead of focusing only to one can surely
improve the scalability of our approach. Developing more advanced models based on this framework
will be crucial for advancing Smart Charging optimization and supporting sustainable energy solutions.
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Abstract—Vehicle-to-grid (V2G) technology has proven to be a
promising solution for integrating electric vehicles (EVs) into the
electricity grid, offering benefits such as grid stabilization and demand
response. Predicting the aggregated available capacity (AAC) of EVs is
crucial for the effective utilization of their energy storage capabilities.
A comprehensive framework for predicting AAC in V2G systems is
presented here. It includes methods for data pre-processing and feature
selection tailored to managing complex datasets with multiple data
sources such as GPS, weather, vehicle characteristics, historical data,
and calendar information. Different predictive models based on machine
learning, such as Neural Networks, Long Short-Term Memory networks,
Tree Ensembles, and Gaussian Process Regressors were implemented.
The application of such models on different multidimensional datasets
seeks to enhance the accuracy of AAC predictions, explaining and
modeling the complex dependencies within the input data and the target
available capacity, ultimately improving the efficiency and reliability of
V2G systems.

Index Terms—Vehicle-to-Grid, data-driven predictive model, time-
series prediction, machine learning, aggregator hub planning

I. INTRODUCTION

Vehicle-to-Grid (V2G) allows the flow of energy between electric
vehicles (EVs) and the power grid, making EVs mobile energy
storage units that enhance grid stability. With EVs expected to reach
60% market penetration by 2030 [1], efficient V2G integration is
vital. Predicting aggregated available capacity (AAC) at hubs is
essential for V2G reliability and economic viability. This prediction
relies on EV availability, influenced by user behavior, charging in-
frastructure location, vehicle characteristics, meteorological data, and
calendar information, as weather and travel habits on weekends and
holidays affect EV usage. Machine Learning (ML) models, including
Persistence models, Generalized Linear Models, Artificial Neural
Networks (ANNs), Long-Short-Term-Memory networks (LSTM), K-
Means Clustering, and Convolutional Neural Networks (CNN), have
been used to predict AAC [2], [3]. from various data sources: limited
EV fleets, charging point data, historical vehicle information, and
calendars [2], [4], [5]. This work aims to combine diverse data
sources and apply them to ML prediction algorithms, using real-
world mobility data, meteorological information, and weekend and
holiday data to predict AAC for V2G applications.

II. DATA COLLECTION AND PRE-PROCESSING

1) The Open-Access Vehicle Energy Dataset (VED): The Vehicle
Energy Dataset (VED) [6] is a freely accessible dataset that was
used for this study. The dataset covers a wide range of geolocalized
vehicles: 264 internal combustion engines (ICEs), 92 hybrid electric
vehicles (HEVs), and 27 plug-in hybrid electric vehicles/electric vehi-
cles (PHEV/EVs), operating in real-world conditions from November
2017 to November 2018 in Ann Arbor, Michigan, USA. The HV
Battery State of Charge (SoC[%]) is provided for the PHEVs and
EVs, while it is calculated as an indirect measure of distance traveled
and charging stop intervals according to [3] for ICEs and HEVs.
Figure 1 shows the density of stops during different intervals of
the day and integrated over the entire year of data. The color scale
represents the duration of the stops in hours. A point of interest,
referred to as Hub1, in the city center was chosen as the best
candidate for a V2G infrastructure.The real or simulated SoCv is
used to determine the Available Capacity of a vehicle (ACv) defined
as the capacity of the available vehicles (within a specific distance
from the hub) to provide energy to the grid in a half-hour (hh) period.
Additional considered aggregated time series are the following: Mean
Hub Distance (MHDhh

hubC ) and Stop Duration Integral (SDIhhhubr ).

A. Meteo Dataset

The meteorological data (precipitation, temperature, wind speed,
humidity, overcast percentage, etc) are extracted from the MeteoStat

This work was funded by the MASE - Consiglio Nazionale delle Ricerche within
the project RICERCA DI SISTEMA 22-24 -21.2 Progetto Integrato Tecnologie di
accumulo elettrochimico e termico. CUP Master: B53C22008540001, UNIME-DI-
RdS22-24:J43C23000670001 Linea 13
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Fig. 1. Stop maps in different time intervals of the day, integrated over the entire
year. The stop events have started in the time window: (a) from 6AM to 12 AM (b)
from 12 AM to 6 PM

database using the Python API [7] based on GPS coordinates of the
geographical area under study.

B. National Holidays Dataset

The information about holidays and weekends is represented by a
discontinuous time series, which is not suitable for the identification
of dynamic models. The goal of fuzzifying such inputs is to obtain
a continuous time series, with hh time interval, that contains both
weekend and holiday information. Fuzzy membership functions were
developed to account for the effects that weekends and holidays might
have on drivers’ habits on the days before and after these periods.
The weekend and holiday membership functions, shown graphically
in Figures 2(a) and (b), respectively, were applied to the time series of
calendar dates. When the weekend membership function is applied
to a calendar day, it outputs a degree of truth, ranging from 0 to
1, indicating the likelihood of the day being a weekend. Similarly,
applying the holiday membership function to a calendar day results in
a continuous value between 0 and 1, representing the degree of truth
for the day being a holiday. To create a single continuous dynamic
feature that integrates both weekend and holiday information, the
maximum value of these membership functions was taken.

III. RESULTS

Different models have been adopted and compared: Neural Net-
works (NNs), Long Short-Term Memory (LSTM) Networks, En-
semble of Trees (TE), Gaussian Process Regression (GPR), and
Trees. Identification and prediction were performed for three different
input selections: Input Set 1 (IS1): AAChubr , Input Set 2 (IS2):



TABLE I
MODELS PERFORMANCE COMPARISON FOR DIFFERENT INPUT SETS (IS1, IS2, IS3)

Inputs Model RMSE(Test) R2(Test)

IS1: AAChubr

NN, 2 Layers (122,2) 3.6918 0.83
LSTM,2 Layers (233,233) 4.68798 0.51

IS2: AAChubr , MHDhubC
,SDIhubr

NN, 3 Layer (298,54,6) 3.3004 0.86
LSTM, 3 Layers (278,278,278) 4.6262 0.58

AAChubr , MHDhubC
,

NN, 3 Layers (50,100,100) 3.2745 0.87
IS3: Meteo, Holidays, LSTM, 2 Layers (299,299) 3.8875 0.68

TE (LSBoost, n.learners=257) 3.2819 0.86
SDIhubr GPR (Linear,Non Isotr.Rat.Quadratic) 3.3093 0.86

Tree (Min Leaf Size: 15) 3.5102 0.84

(a) Weekend

(b) National Holidays

Fig. 2. Membership function for the fuzzification of the holiday rate. (a) Weekend
membership. (b) National holiday membership functions.

AAChubr , MHDhubC , SDIhubr , Input Set 3 (IS3): AAChubr ,
MHDhubC , SDIhubr , meteo information (precipitation, temperature,
wind speed), holiday rate.

Data was divided into training and validation (75%) and testing
(25%) datasets. In particular, to avoid seasonal bias and unbalanced
datasets, 3 weeks per month were chosen as training/validation, 1
week as test. The model optimization for hyperparameter determina-
tion was implemented via a Bayesian algorithm. The optimization
metric was based on the minimization of the root mean square
error (RMSE). The optimal hyperparameters and associated model
performances are shown in Table I in terms of RMSE and correlation
coefficient (R2) for both the test datasets.

The NN and LSTM models were applied to all three input sets,
while the TE, the GPR, and the Tree were only applied to the
complete input set IS3, which resulted in being the most promising.
The best-performing model in the validation dataset is the LSTM
using the IS2. The best-performing model in the test dataset is
the NN using the full input dataset IS3. This suggest that that
the dynamics of the system are affected by the exogenous inputs,
thus confirming the validity of the proposed holistic methodological
framework.

Figure 3 shows the 30-minute ahead prediction of AAC in the
same week with (a) NNs and (b) LSTMs. The performance of NNs
is marginally superior to that of LSTM models, which frequently
underestimate the actual value of AAC. Nonetheless, the primary
objective of this paper is to demonstrate that, irrespective of the
model employed, integrating the full input set IS3 enhances model
prediction accuracy.

IV. CONCLUSIONS

A key contribution of this work to the existing literature is
the comprehensive integration of geographical, meteorological, and
temporal factors, particularly through the use of a fuzzy input set that
accounts for both national holidays and weekends. Future research
can expand on this approach by employing data-driven linear state-
space representation techniques and comparing them with nonlinear

(a) Neural Networks

(b) LSTM

Fig. 3. 30-minute ahead prediction for AAChub1r using different input sets to the
optimized models for the week in the test dataset Oct. 24th to Oct. 31st, 2018. (a)
Neural Networks and (b) LSTM.

black-box models, leveraging their ability to extract relationships
between exogenous inputs and target variables. The application of
our forecasting framework can be adapted to general mobility data to
support the strategic placement of aggregator hubs and optimize their
distribution to effectively manage and utilize the available capacity
of geographically dispersed EVs. This strategic planning contributes
to the overall scalability and adaptability of the V2G infrastructure.
These innovations not only extend the applicability of our method to
generic data, but also highlight its versatility in predicting available
capacity and demonstrate that it can be adapted for various EV
applications beyond V2G.
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Infrastructure-less UWB-based Relative Localization: an Active Approach

Valerio Brunacci, Alberto Dionigi, Alessio De Angelis, and Gabriele Costante

Abstract— In multi-robot systems, relative localization is
crucial in many tasks, such as leader following, target tracking,
or cooperative maneuvering. Current approaches either rely
on infrastructure-based or on infrastructure-less setups. The
former typically achieve high localization accuracy but require
fixed external structures. The latter provide more flexibility,
but often requires Line-of-Sight (LoS) devices like cameras or
lidars. Ultra Wide Band (UWB) devices are emerging as a viable
alternative to build infrastructure-less solutions that do not
require LoS. These approaches directly deploy the UWB sensors
on the robots. However, they require that at least one of the
platforms is static, limiting the advantages of an infrastructure-
less setup. In this work, we remove this constraint and introduce
an active method for infrastructure-less relative localization.
Our approach allows the robot to adapt its position to minimize
the relative localization error of the other platform.

I. INTRODUCTION

Localization is a longstanding goal in robotics and is

certainly one of the most crucial components of every robotic

platform. At a high level, localization can be achieved by

relying either on a fixed infrastructure or solely on onboard

robot sensors. The former setup is implemented by cou-

pling external sensors with onboard markers or receivers.

Infrastructure-less solutions, on the other hand, do not require

external structure at fixed known positions.

Relative localization between platforms can be exploited

to refine their respective global pose estimate, or used for

tasks where platforms are mainly interested in their relative

pose with respect to another robot. Relative localization can

be achieved with various sensor setups, among which the

most popular are based on cameras, lasers, and lidars. De-

spite the impressive results achieved, these approaches suffer

from two important limitations: i) relative pose information

needs to be inferred from data through perception algorithms;

ii) they require Line-of-Sight (LoS) to operate.

Ultra Wide Band (UWB) technology is currently flourish-

ing as a viable alternative to achieve relative localization.

UWB systems are cost-effective, can be used to directly

access distance information between entities, and can work

in Non-Line-of-Sight (NLoS) conditions. Most of the UWB-

based solutions are infrastructure-based, i.e., they use fixed

UWB sensors with known positions (namely the anchors)

to localize the platform equipped with another UWB device

(often referred to as tag) [1].

Recently, UWB sensors have been also employed in

infrastructure-less configurations to achieve relative localiza-
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Fig. 1: Overview of the proposed approach. Contrary to the SotA
approaches (bottom figure with red bar), we develop an active
method (top figure with green bar) that exploits the movement of
the robot to enhance the localization performance.

tion between robots [2], [3]. In this case, also the anchors

are mounted on a mobile platform that estimates the relative

position of the robot with the tag UWB. However, most of

the State-of-the-Art (SotA) approaches keep the robot with

anchors in a fixed position, limiting the advantages of an

infrastructure-less setup. Additionally, in infrastructure-less

setups the tag moves outside the convex hull delimited by

the anchors. In practice, this translates in a worse Geometric

Dilution Of Precision (GDOP) [4], a metric that models the

localization errors depending on the anchor-tag arrangement.

In some configurations, particularly those where the tag is

outside the anchor hull, small measurement errors might

result in large relative position errors.

Driven by the aforementioned considerations, the purpose

of this research is to build an infrastructure-less UWB-based

relative localization approach that overcomes the drawbacks

of SotA solutions. In particular, we develop an active lo-

calization method that enables the robot with the anchors

to adapt its position to reduce the relative localization error

of the tag robot, see Fig 1. This is achieved by training a

Deep Reinforcement Learning (DRL) agent that controls the

platform to minimize a loss function based on the GDOP

metric and on a measurement model tailored to the specific

problem we consider. Differently from other solutions, we

do not assume that the robot with the anchors is static.

II. METHODOLOGY AND TASK DETAILS

The objective of the proposed active relative localization

method is to provide a robotic platform with a suitable

control policy so that to obtain the best possible estimation

of another robot position. In this research, we consider an

infrastructure-less context with two distinct robotic plat-



TABLE I: Results of the simulation experiments. From top to
bottom we consider different AnchorBot - TagBot initialization
distances: 70 cm, 100 cm and 200 cm. The mean µ and the standard
deviation σ of the localization RMSE in cm are reported.

Method

Static TagBot Dynamic TagBot

Front Spawn Side Spawn Behind Spawn Straight Line Circle Square

µ σ µ σ µ σ µ σ µ σ µ σ

SUL-EQ [5] 11.0 7.8 12.9 9.6 16.0 13.9 28.2 24.9 13.3 10.4 21.6 18.2

SUL-IS 10.3 7.1 12.9 9.7 21.6 30.7 26.0 22.8 13.5 14.1 20.2 16.9

AUL-EQ 11.5 8.1 11.7 8.3 11.5 9.3 12.7 9.1 11.4 8.0 11.9 8.5

AUL-IS (Our) 10.7 7.5 11.0 7.8 11.3 9.7 11.7 8.3 10.6 7.4 11.1 7.8

SUL-EQ [5] 15.9 11.7 18.2 13.7 20.7 15.7 33.3 28.3 18.3 13.7 26.2 21.6

SUL-IS 14.9 10.7 18.0 13.6 20.2 19.5 31.0 26.2 17.7 14.1 24.4 20.0

AUL-EQ 12.0 8.7 12.6 9.5 12.9 9.8 13.1 9.5 12.2 8.7 12.3 9.0

AUL-IS (Our) 11.2 8.0 11.9 9.0 12.3 9.8 12.1 8.7 11.3 7.9 12.1 8.7

SUL-EQ [5] 33.2 25.2 35.6 27.1 37.9 29.0 50.7 41.0 35.6 27.1 42.8 33.9

SUL-IS 30.8 23.1 35.6 27.1 35.3 27.4 47.0 37.7 34.3 26.2 39.7 31.3

AUL-EQ 21.0 17.9 22.7 19.5 24.5 20.6 25.4 20.1 13.3 10.3 17.5 16.6

AUL-IS (Our) 19.5 16.6 23.9 20.4 22.5 19.3 23.8 18.6 12.2 9.4 15.9 15.1

forms: the first one, named AnchorBot, is equipped with

three UWB anchor nodes, and its function is to localize

with respect to its body frame the second one, referred to

as the TagBot, which is equipped with a single UWB tag.

The AnchorBot have access only to the relative distances

between the anchors and the tag, and the goal is to adapt its

position in order to minimize the TagBot localization error.

To this aim, we propose a new framework that i) study

and design an anchor arrangement to adapt the GDOP to the

relative localization task in mobile robot scenarios and ii)

exploits this design through an active localization strategy.

a) Anchors Displacement Analysis: we conduct an in-

depth anchor placement analysis to identify suitable config-

uration for the active localization task. When the AnchorBot

is static and the TagBot moves freely, the best strategy is to

keep the GDOP as low as possible at all points surrounding

the AnchorBot. [5] finds out that the equilateral triangle

arrangement comes closest to achieving this goal. However,

a uniformly distributed GDOP results in a higher minimum

value compared to configurations tailored for localizing

the robot within specific areas. Consequently, through an

extensive Monte Carlo simulation campaign over a set of

possible configurations, we select an isoscele triangle config-

uration for the anchors. The trade-off is that the AnchorBot’s

front region hosts the GDOP minimum, requiring precise

localization of the TagBot in that zone.

b) UWB Relative Localization Loss: In an UWB-based

localization context, directly using the GDOP as the loss

function might seem a reasonable choice since, by definition,

it is a performance metric for positioning. However, this

is impractical since, in an infrastructure-less scenario, the

GDOP minimum falls in the AnchorBot footprint area.

Furthermore, another aspect that influences localization per-

formance is distance: UWB sensors are not able to provide

a reliable measurement for short distances. Consequently,

we develop a novel UWB Relative Localization Loss that

combines the GDOP metric with a suitable measurement

model for the anchors that takes into consideration the UWB

performance degradation for short ranges.

c) Deep Reinforcement Learning controller: for the

implementation of the control policy we employ a DRL

strategy that leverages Deep Neural Network (DNN) approx-

imators. In particular, we design two DNN architectures: the

actor one learns the optimal policy and only leverages range

measurements coming from UWB-devices, while the critic

counterpart is fed with more privileged information and used

TABLE II: Results of the real-world experiments. The mean µ the
standard deviation σ of the localization RMSE in cm are reported.

Method
Static TagBot Dynamic TagBot

Front Spawn Side Spawn Behind Spawn Straight Line Circle Square
µ σ µ σ µ σ µ σ µ σ µ σ

SUL-IS 5.6 3.7 9.0 6.3 7.6 9.7 32.5 22.2 13.2 8.8 26.6 22.9
AUL-IS (Our) 4.9 3.3 7.1 4.9 5.9 4.2 12.7 8.1 12.2 7.2 14.7 7.8

only during training phase to evaluate such a policy. For the

optimization, we design a suitable reward function based on

the UWB Relative Localization Loss.

III. EXPERIMENTS

The proposed AUL-IS (Active UWB-Localization -

ISoscele triangle configuration) approach is tested through

an extensive simulation campaign and validated with real-

world experiments on a wheeled robotic platform. More

specifically, we perform two distinct types of experiments.

In the first one, the TagBot remains stationary and assumes

three different positions: in front of, to the side, and behind

the AnchorBot. The second set of tests is, instead, aimed

at assessing the capability of the proposed active method to

localize a moving platform. As a comparison baseline, we

employ (i) the method proposed in [5] where the AnchorBot

is kept stationary and the anchors have an equilateral triangle

configuration (SUL-EQ), (ii) a stationary AnchorBot with

our isosceles triangle configuration (SUL-IS) and (iii) an

active version of [5] (AUL-EQ).

The results of the simulated experimental campaign are

reported in Table I. A first key finding is that the active

approaches AUL-EQ and AUL-IS outperform their static

counterparts SUL-EQ and SUL-IS in every situation. This

result is a direct consequence of the control policy developed

by the DRL agent, which is able to effectively move and

orient the AnchorBot so as to maintain the TagBot in low

GDOP areas. Moreover, it can be observed that the special-

ized anchor configuration exploited by AUL-IS can further

enhance the localization performance.

Real-world experiments are carried out to validate the re-

sults obtained in the simulation campaign and to demonstrate

the transferability of the DRL controller on a real platform.

The trained DRL policy is directly deployed on the real

AnchorBot without any fine-tuning, and the results against

the static baseline are reported in Table II. The learned

controller demonstrates strong generalization capabilities as

it achieves remarkable localization performance when real

robotic platforms and UWB sensors are involved. The nu-

merical experiments show that AUL-IS outperforms SUL-IS

in each considered scenario, confirming what we observe in

the simulations experiments.
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Decentralized Control of UAV Swarms for Bandwidth-aware Video
Surveillance using NMPC

Mohammad Amin Rezaei, Gioacchino Manfredi, Vito Andrea Racanelli, Luca De Cicco, and Saverio Mascolo

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), such as multi-rotor
drones, are increasingly being employed as mobile flying
platforms to carry out several tasks such as photogramme-
try, remote sensing, etc. To perform such tasks, UAVs are
equipped with a variety of sensors that produce data to be
either stored on the UAVs or sent in real-time through a wire-
less network connection to a Ground Control Station (GCS).
A UAV swarm is a system of coordinated UAVs designed to
carry out a common task collaboratively. On the one hand,
swarms improve data acquisition efficiency and accuracy,
increase coverage, and ensure operational resilience. On the
other hand, swarming requires both (i) providing the UAVs
with autonomous capabilities such as path planning and
obstacle avoidance and (ii) the design of control strategies
to coordinate the UAVs to perform a given task. Specific
tasks such as surveillance, object detection, and patrolling,
often require to stream in real-time the videos captured by
the onboard cameras to a GCS.

In this work, we propose a distributed multi-agent control
framework to track a certain path while both trying to
maximize the area covered by the cameras and the quality of
the videos sent by each agent to the base station according
to the available bandwidth. For this purpose, each drone has
the possibility of changing its altitude at each time step.

The control methodology adopted to tackle the aforemen-
tioned issues is a partially distributed NMPC framework.
Moreover, to implement a realistic scenario, each drone is
subject to limited control inputs and limited changes in the
control inputs.

II. SCENARIO DEFINITION

Consider a swarm of drones equipped with cameras that
are required to track a predefined path and monitor an area
for a specific purpose. The camera on each drone points
vertically to the ground and scans a square area whose width
depends on the drone’s altitude. The video content captured
by the cameras is then sent to a Ground Control Station
(GCS) using a network connection such as f.i., a 5G link.
Such a station is in charge of receiving in real-time the
video flows sent by all the agents and stitching together
the frames to obtain a unique video composing the single
videos. When a high available bandwidth is measured, the
agents can increase their altitude to increase coverage. On
the contrary, when the available bandwidth is scarce, they
reduce the altitudes to improve the visual quality.

In the described scenario, each drone has two contrasting
goals: i) provide a good percentage of overlap among the

videos and the best visual quality for each video captured,
and ii) increase coverage of the region of interest. To achieve
the first goal, each drone would keep a relatively low altitude,
consequently implying a decrease in the GSD and increased
visual quality. On the other hand, the coverage is improved
when the altitude is increased since the cameras mounted on
the drones can capture a wider region.

Moreover, to survey the area, a leader drone is chosen
to track a predefined path. The other agents are required to
catch up with it while keeping a safe distance both from the
leader and from the other agents. Notice that the altitude of
each drone changes as it moves according to the measured
available network bandwidth [1].

A. Problem definition

Let us now introduce the NMPC run at each drone. In
particular, a two-state algorithm has been designed to avoid
detachments.

The discrete-time dynamics describing the evolution of the
state for each drone is assumed to be a simple integrator for
simplicity.

si(k + 1) = si(k) + Tsui(k), i = 1, . . . , N (1)

where N is the number of agents, si = (xi, yi, zi)
T is the

vector of the spatial coordinates of agent i, Ts is sampling
time, and ui = (ux,i, uy,i, uz,i) is the control input for agent
i. Equipped with this notation, the general optimization is in
the following form:

Minimize
ui

Ji (2)

subject to si(k + 1) = si(k) + Tsui(k) (3)
hmin ≤ hi ≤ hmax (4)
∥Xi(t)−Xj(t)∥2 ≥ 2Rsafe (5)
|ui| ≤ umax (6)
|∆ui| ≤ ∆umax (7)

where Xi = (xi, yi)
T is the 2-D position of the i-th agent,

hi is the drone’s altitude, and ∆ui denotes the variation in
the input signal.

In the Tracking state (T ), there is no risk of detachment
and the leader tracks the predefined path. Conversely, when
in the Recovery state (S), there is a high risk of detachment,
thus the cost function in the NMPC of each agent changes. In
this state, the leader does not move. Only when the adequate
overlap is reestablished will the system transition back to the
Tracking State. In the Tracking state, the cost functions for
the leader and the agents are as follows:



TABLE I: Values of the weights in the cost functions of the NMPCs
wl wp wf wh wu w∆u

J1,T - 1.5 - 5 0.001 0.001
Ji,T 0.5 - - 1.5 0.001 0.001
J1,S - - - 0.5 0.001 0.001
Ji,S 1.5 - 0.3 1.5 - -

J1,T = wpJp + whJh + wuJu + w∆uJ∆u, (8)

Ji,T = wlJl + whJh + wuJu + w∆uJ∆u, (9)

Jp is the cost for the path tracking and Jh is the cost
for altitude tracking. Ju and J∆u are the costs to limit the
control effort and the variation in the control input. The cost
function Ji,T , for i = 2, . . . , N is related to the other agents
for the state T . Jl is the cost to encourage agent i to follow
the leader (X1).

In the Recovery state, the cost functions for the leader and
the other agents are as follows:

J1,S = whJh + wuJu + w∆uJ∆u (10)

Ji,S = wlJl + whJh + wfJf (11)

where, wp, wl, wf , wh, wu, w∆u are weights to be properly
tuned, and Jf encurages the agents to keep close to each
other. Using simple geometrical arguments, the relationship
between Ri and hi is given by Ri = hi tan(ϕ/2), where ϕ is
the angular aperture of the video camera [2]. Note that the
actual communication graph is a complete directed graph
since every agent can communicate with any other agent
through the Internet connection. Only for Jf , a subgraph
with fewer edges is employed to solve issues related to the
agents stuck at the lowest altitude and to avoid redundant
communication among the agents

To determine the reference height for each agent, we use
the following relationship:

h̄i(b) =


hmin b < bmin

S · b+ hmax − S · bmax bmin ≤ b ≤ bmax

hmax b > bmax

(12)
where S is defined as S = (hmax − hmin)/(bmax − bmin).

III. SIMULATIONS

To run the NMPC, we set Np = 5, Nc = 2, Rsafe = 2,
hmin = 4, and hmax = 10. The upper and lower bounds for
∆u have been set to 0.1 for all agents. The maximum control
signal u in the x and y direction is set to 1 for all the agents
except the leader, which is 0.7, whereas in the z direction
it has been set to 0.1. Concerning the network available
bandwidth, we set it by drawing from a uniform random
distribution of bandwidth values over the area to be scanned.
Such values are then variable in space but assumed to be
constant in time and altitude. We chose to generate random
bandwidth between a minimum value of 500 kbit/s and a
maximum value of 5000 kbit/s to have a realistic bandwidth
profile due to its unpredictability.

Let us start by considering the case N = 6, where the
leader is required to track a sine-like path. The drones’
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Fig. 2: Agents’ coordinates dynamics in the case of a switch
between Tracking and Recovery state

trajectories and the area covered by their cameras are shown
in Figure 1. It can be seen that the drones, whose initial
position is denoted with round markers, strive to follow the
leader in the space while sticking together. On the x, y-plane,
the reference path for the leader (black dashed line) and
the leader’s trajectory projection on this plane (light blue
line) are depicted. The z-axis represents the altitude of the
drones, which is shown to change along the path due to its
dependence on the bandwidth.

The switches between the Tracking and Recovery state
and their effects on the positions of the agents are illustrated
in Figure 2. As one can observe, in the Recovery state (grey
area), the lines representing the x and y coordinates of the
agents are far from each other. Moreover, the coordinates
associated with the leader (blue lines) are constant. After
obtaining enough overlap, the system switches to the Track-
ing state (white areas) as these positions become close to
each other.
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Online Minimization of Robot Obstruction in
Eye-to-Hand Camera View

G. Cortigiani1, B. Brogi1, A. Villani1, N. D’Aurizio1,2, D. Prattichizzo1,2, T. Lisini Baldi1,2

Abstract— Redundant robots have the potential to perform
internal joints motion without modifying the pose of the end-effector
by exploiting the null-space of the Jacobian matrix. Capitalizing on
that feature, we developed a control technique for minimizing the
robot visual appearance when observed from an eye-to-hand camera.
Such algorithm is instrumental in contexts where quickly adjusting
the perspective to see objects obstructed by the robot is impractical
(e.g., teleoperation in narrow environment). Diminished reality
techniques are frequently employed in these cases to mitigate the
robot intrusion into the environment, although these techniques may
sometimes compromise the perceived realism. The experimental
evaluation confirmed the effectiveness of our control algorithm,
demonstrating an average reduction of 4.67% of the area covered
by the robot within the frame when compared to the case without
the optimization action.

I. INTRODUCTION

The challenge of reducing the visual encumbrance of robots is
critical in several domains. In teleoperation within unstructured
environments, visual encumbrance can hinder performance [1].
Additionally, in visual servoing applications, vision occlusions
can result in control failures [2]. Other scenarios include
individuals with disabilities who rely on robots to mitigate
their limitations [3]. Indeed, visual perception is one of the most
fundamental aspects that affects the quality and accomplishment
of teleoperation tasks [4].

This work aims at dynamically reducing the impact of the
robot in the user’s field of view proposing a control algorithm
that minimizes the robot silhouette in a eye-to-hand configuration.
In particular, achieving this objective involves leveraging the
manipulator redundancy to optimize the robot pose while
maintaining the desired pose of the end-effector. The null space
of the Jacobian matrix is exploited to minimize the number of
pixels in the camera framing that contains portions of the robot
silhouette, and, at the same time, maximize the distance from the
joint limits to keep the primary task (i.e., accomplish a desired
trajectory) feasible. Fig. 1 visually summarizes this concept,
whereas a more detailed description can be found in [5].

II. ROBOT CONTROL ALGORITHM

The algorithm developed with this work approximates the
area of the robot to the cumulative length of the links projected
onto the camera plane. More precisely, the distances between
the consecutive projected joints are summed, leading to the
following function:
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was also supported by the Leonardo S.p.A. under Grant LDO/CTI/P/0025793/22.

1 are with the Department of Information Engineering and Mathematics,
University of Siena, Via Roma 56, 53100 Siena, Italy. {cortigiani, brogi, villani,
lisini, ndaurizio, prattichizzo}@diism.unisi.it
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Fig. 1: Two key time instants taken from the execution of a repre-
sentative end-effector trajectory performed with (right column) and
without (left column) the action of the control algorithm minimizing
the robot silhouette in the eye-to-hand camera framing. Throughout the
trajectory execution, the algorithm actively reduces the robot visibility
while maintaining the end-effector pose along the desired path.

Fl(q) =

n−1∑
i=1

√
(x̂i+1 − x̂i)2 + (ŷi+1 − ŷi)2,

where (x̂i, ŷi) is the position of joint i projected on the camera
plane. In a more practical interpretation, this method minimizes
the lengths of the link projections, encouraging the links to be
oriented along the direction in which the camera is pointing.
Starting from this, we can define the cost function Cl(q):

Cl(q) = αlFl(q) + βL(q)

where αl and β are scaling factors that appropriately weigh each
contribution to the overall cost. The term L(q) is added to the
cost function to prevent the robot from reaching the joint limits
during its movement, and it is defined as:

L(q) =
n∑

i=1

(
1

wM − w(qi)
− 1

wM

)
.

Following the approach described in [6], we define the normal-
ized distance from the mechanical joint limits as:

w(qi) =

(
qi − q̄i

qiM − qim

)2

(1)

where qiM and qim represent the upper and lower joint limits,
respectively, while q̄i denotes the midpoint of the joint range.
The term wM = 1

4 is the maximum value that Eq. (1) can
assume. Consequently, maximizing the distance of the joints
from the limits guarantees that the robot motion is feasible.
The resulting cost Cl is meant to be a differentiable function
that approximates the characteristics of the projected robot area,
while also adjusting potential joint limit violations.

The robot is then controlled according to the following
equation:

q̇ = J†(ṙd +Ke)− (I − J†J)∇qCl(q)



where q̇ are the desired joint velocities, ṙd is the vector
containing the desired end-effector linear and angular velocities,
J is the Jacobian matrix of the robot, (·)† is the pseudo-inverse
operator, e is the error of the end-effector pose, K is a positive
definite matrix that ensures the error convergence, and (I−J†J)
is the projector on the null space of the Jacobian matrix. The
projected joint velocities do not contribute to the end-effector
motion. Therefore, they can be utilized to accomplish a secondary
task while guaranteeing the accurate execution of the primary
task, i.e., tracking the desired end-effector trajectory.

III. EXPERIMENTAL EVALUATION

A. Correlation Analysis

As a first step, we experimentally assessed if the cost function
is suitable for approximating the area of the robot projected onto
the camera image plane. To this end, we performed a correlation
analysis to determine whether there exists a monotonic relation
between the output of the candidate functions Fl(q) and the
area of the robot silhouette in the framing (expressed as number
of pixels). A virtual environment was used to collect data for the
correlation analysis. The virtual scene comprised a digital Franka
Emika Research 3 Robot and a virtual camera. We tested the
correlation by collecting data from three different points of view
(Camera 1, Camera 2, and Camera 3). For each condition, we
moved the robot in approximately 1.2×107 different poses, and,
for each pose, we computed the number of pixels projected onto
the camera image plane following the methodology described in
[7]. For each virtual camera, a Spearman’s rank-order correlation
test was run to assess the relationship between number of pixels
of the robot on the camera image plane and the output of
the function Fl(q). Resulting correlation factors (ρ1 = 0.743,
ρ2 = 0.763, and ρ3 = 0.643) showed a strong correlation
for Camera 1 and Camera 2, and a moderate correlation for
Camera 3.

B. Minimization Analysis

To test the effectiveness of the control algorithm that mini-
mizes the robot silhouette in the framing by exploiting the cost
function based on the link-based method, we simulated four
different trajectories using Gazebo and ROS. More precisely,
the four trajectories are:

T1: Planar Lissajous Path in the x-y plane with a duration
of 20 seconds.

T2: Planar Lissajous Path in the x-y plane with a duration
of 30 seconds.

T3: Pouring Trajectory with a duration of 23 seconds.
T4: Pick and Place Trajectory with a duration of 14 seconds.

T1 and T2 delineate paths challenging to be followed due to
the differences in curvature and velocity at every point, while
T3 and T4 were selected to exemplify real world tasks of a
teleoperation scenario. Each trajectory was executed four times:
once without the minimization algorithm, and three times with
the scene recorded from each of the three different points of
view mentioned in Sect. III-A.

Outcomes of the experiments reveal an average reduction of
4.67% in the robot area visible from the camera, with significant
variability contingent upon the camera configuration. Specifically,
we observe an average reduction of 4.21%, 1.00%, and 8.8%
considering Camera 1, Camera 2, and Camera 3, respectively.
Concerning T1 and T2, it is worth noting how, on average, T2

presents a more substantial reduction, even though T1 and T2
describe the same path. This is attributed to the longer duration
of T2, which gives the robot ample time for reconfiguration into
a more advantageous pose.

The influence of the camera configuration on the minimization
performance can be attributed to a combination of factors,
including the robot task space location and the extrinsic camera
parameters. For instance, Camera 2 was positioned laterally and
orthogonally to the task space of the robot. Hence, its pose made
the achievement of effective minimization along the trajectory
challenging. Furthermore, in such configuration, the link section
dimensions could also be less negligible.

In the specific case T3 with Camera 2, we observed a
negligible average increase in the exposed robot area (+0.16%)
compared to the baseline. This lack of improvement can be
attributed to the nature of the algorithm as an online optimization
method, which tries to optimize the robot pose in a real-
time manner without knowledge of future desired positions.
Consequently, it initiated a reconfiguration that minimized the
area during the first time intervals. However, this subsequently
resulted in the robot assuming a less advantageous posture, with
no further improvements afterwards. Additionally, the method
discourages the robot from operating too close to its joint limits.
Therefore, in scenarios where the desired trajectory approaches
these limits, the algorithm encourages the robot to exploit its
null space to move away from the limits rather than prioritizing
the reduction of the robot area.

IV. CONCLUSIONS AND FUTURE WORK

We presented a novel methodology aimed at minimizing the
visual footprint of a robotic arm as captured by a camera.

In contrast to approaches based on multiple or controllable
cameras, the proposed method only relies on the kinematic
control of the robotic arm, thus it can be easily adapted to
various setups and scenarios. Additionally, the cost function
explicitly depends on the camera pose, which allows for
minimization even when the camera moves during the trajectory.
In forthcoming studies, we intend to explore an objective function
that incorporates the three-dimensional characteristics of the
links and considers the boundaries of the image plane. We will
also thoroughly analyse how the variation of camera and robot
workspace influence the minimization algorithm. Moreover, we
will focus on selecting regions or objects within the image that
should experience minimal occlusion.
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Homography-Based Sampled-Data Visual Servoing
Marco Costanzo, Giuseppe De Maria, and Ciro Natale
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Fig. 1. Current ΣC and desired Σ⋆ camera frames in standard RGB
notation. P is the generic point on the planar object O.
1 INTRODUCTION

Position-Based Visual Servoing (PBVS) and Image-Based
Visual Servoing (IBVS) are well-established strategies for visual
control [1], [2]. Most of visual servoing schemes use a redun-
dant number of features, and thus their convergence cannot be
global [1]. To overcome these drawbacks an approach based on
the estimation of the camera displacement between the current
and the desired views of a scene has been introduced in [3]. The
approach is based on the homography matrix, which contains
the Euclidean information between two views of a planar scene.
The main results on homography-based control schemes are
formulated in the continuous time domain. Due to the limited
camera frame rate, actuation delay, and computation time, the
intrinsic sampled-data nature of such control schemes should
be taken into account. This abstract shows the main result
of our recent work [4], where we propose an exact sampled-
data model of the homography dynamics and an adaptive
visual controller that directly uses the homography matrix and
explicitly takes into account camera velocity limits ensuring
global asymptotic stability at the same time.

2 SAMPLED DATA MODEL

With reference to Fig. 1, consider a planar object O and a
moving camera identified by the frame ΣC . Let n̂ be the unit
vector perpendicular to O, Σ⋆ the desired camera frame, and d⋆

the distance between the origin of Σ⋆ and O. The Homography
HC

⋆ relates the displacement between the view of the camera
located in Σ⋆ with the one of the camera located in ΣC .
Since all the object points belong to the plane with equation
n̂⋆⊤

[x⋆y⋆z⋆]⊤ = d⋆, it holds that[
xC yC zC

]⊤
= HC

⋆

[
x⋆ y⋆ z⋆

]⊤
, (1)

where
[
xC yC zC

]⊤ and
[
x⋆ y⋆ z⋆

]⊤ are the coordinates
of the generic point P referred to the frame ΣC and Σ⋆, respec-
tively, and being HC

⋆ the well-known homography matrix, [5],
which, in view of the plane equation above, can be related to
the rotation RC

⋆ and translation tC⋆,C of Σ⋆ with respect to ΣC as

HC
⋆ (t) = RC

⋆(t) + tC⋆,C(t)n
⋆⊤, (2)

The authors are with the Dipartimento di Ingegneria, Università degli
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where, by denoting with n̂⋆ the vector n̂ expressed in the frame
Σ⋆, n⋆ = n̂⋆/d⋆.

By assuming to control the velocity of the camera by means
of an ideal Cartesian velocity generator, we can obtain the
relation between the camera velocity and the homography
matrix by deriving (2) with respect to the time t

ḢC
⋆ (t) = S⊤(ωC

C,⋆(t))H
C
⋆ − vC

C,⋆(t)n
⋆⊤, (3)

where S(·) is the 3D skew-symmetric matrix operator such that
S(x)y = x× y, and vC

C,⋆ (ωC
C,⋆) is the linear (angular) velocity

of the frame ΣC with respect to the frame Σ⋆ expressed in the
frame ΣC .

In this work, we explicitly consider the sampled-data nature
of the control scheme. To this aim, it is interesting to note that,
with reference to the sampling time interval [kT, (k + 1)T ), the
nonlinear system (3) can be written as

Ḣ(t) = S⊤(ωk)H(t)− vkn
⊤, H(kT ) = Hk (4)

where the control input vk =
[
v⊤
k ω⊤

k

]⊤ is kept constant, and
Hk is the initial condition at t = kT . Defining the function

P (ω, t) =

∫ t

0

eS⊤(ω)σ dσ, (5)

and expanding the exponential matrices in power series, it is
possible to write the homography time evolution

H(t) = Hk + P (ωk, t− kT )
[
S⊤(ωk)Hk − vkn

⊤
]
, (6)

which is the homography matrix time evolution, within the
sampling interval [kT, (k + 1)T ), starting from the initial con-
dition Hk and subject to a constant input vk. In order to study
the visual servoing problem, it is useful to refer, instead of the
homography state space, to the homography error space, i.e.
E = H−I3. This way the desired equilibrium point is E = 03,
being 03 the 3× 3 zero matrix.

Within the sampling interval, it holds that

Ė(t) = S⊤(ωk)(E(t)− I3)− vkn
⊤ (7)

E(t)=Ek + P (ωk, t−kT )
[
S⊤(ωk)(Ek+I3)−vkn

⊤
]

(8)

where the initial condition is E(kT ) = Ek = Hk − I3.

3 CLOSED-LOOP CONTROL SCHEME

The proposed control law has the same structure as in [5]

vk = kpkEkn, ωk = krkω
1
k, with (9)

ω1
k = vex(Ak), Ak = Ek −E⊤

k . (10)

The main difference with the procedures already proposed in
the literature is that the control gains kpk and krk are adapted
at each sampling instant kT in order to guarantee asymptotic
stability.
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In order to study the time evolution of the error within
[kT, (k + 1)T ), let Pk(·) = P (ω1

k, ·), we can write the closed-
loop error system as

E(t) = Ek − Pk(krk(t− kT ))

[
Ak(Ek + I3) +

kpk

krk
Eknn

⊤
]
.

(11)
Note that, in (11), the time t is multiplied by the rotational gain
krk, thus the system trajectory in the error space depends only
on the initial condition Ek and the gain ratio kpk

krk
, while the time

axis is just scaled by krk. Given this reasoning, we propose the
following change of variables

γk = krk(t− kT ), αk =
kpk

krk
. (12)

With this choice γk is the new time variable, it is a scaled time
with the coefficient krk. Thus, we can define the function

Ẽ(γ) = E(γ/krk + kT ) (13)

which is the error evolution in the scaled time γ. It holds that

d

dγ
Ẽ(γ)

∣∣∣∣
γ=krk(t−kT )

= Ė(t)/krk (14)

d

dγ
Ẽ(γ)

∣∣∣∣
γ=γk

= A⊤
k (Ẽ(γk)− I3)− αkEknn

⊤ (15)

Ẽ(γk) = Ek−Pk(γk)
[
Ak(Ek+I3)+αkEknn

⊤
]
. (16)

We want to prove that the error norm time derivative is
negative in the sampling time interval (kT, (k + 1)T ). In the
new variables γk and αk, this is equivalent to the following
condition

F(γk, αk)=
1

2

d

dγ

∥∥∥Ẽ(γ)
∥∥∥2

F

∣∣∣∣
γ=γk

< 0, ∀γk ∈ (0, krkT ). (17)

The following lemma holds.
Lemma 1. Consider F(γk, αk) in (17), it holds that

∀Ek ̸= 03, ∀αk > 0, ∃γ̄k > 0 | F(γk, αk)<0, ∀γk∈(0, γ̄k)

We are now ready to state the main result of this work.
Theorem 1. Consider the system (3) where the control v(t) =[

v⊤(t) ω⊤(t)
]⊤ is kept constant for t ∈ [kT, (k + 1)T ) at

the values in (9). Select γ⋆
k , α⋆

k satisfying Lemma 1, i.e.

F(γ⋆
k , α

⋆
k) ≤ 0, (18)

if the control gains kpk, krk > 0 are selected to satisfy

γ⋆
k = krkT, α⋆

k = kpk/krk, (19)

then the equilibrium H = I3 is globally asymptotically sta-
ble.

Theorem 1 provides sufficient conditions for the global
asymptotic stability of the visual control scheme, but the per-
formances in terms of rate of convergence and camera velocity
constraints are not taken into account. This can be done by
selecting the control parameters γ⋆

k and α⋆
k in order to maxi-

mize the performances of the closed-loop system. This can be
pursued by solving the following optimization problem at each
sampling instant t = kT :

argmin
γk, αk

[
∆V (γk, αk) + β(γ2

k + α2
k)
]

(20a)

s.t. F(γk, αk) ≤ 0 (20b)

0 < γk ≤ ωMT

∥Ak∥2
, 0 < αkγk ≤ vMT

∥Ekn∥
(20c)

where
∆V (γk, αk) =

∥∥∥Ẽ(γk)
∥∥∥2

F
− ∥Ek∥2F . (21)
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Fig. 2. Error norm trajectory obtained by using a continuous-time con-
troller (red), a constant gains sampled-data controller (blue), and the
proposed optimized sampled-data controller (black).

4 NUMERICAL EXPERIMENTS

Fig. 2 shows the results of three simulations carried out
by selecting the initial condition RC

⋆ = Ry(6
◦)Rz(20

◦), and
tC⋆,C =

[
−0.15 0 −0.1

]⊤ m. The regularization term is set with
β = 0.5 · 10−4. The red curves show the results carried out
by adopting a continuous-time controller with constant gains
kp = 4.23 and kr = 2.28, selected such that the resulting veloci-
ties are below the imposed camera velocity limits vM = 1.2m/s
and ωM = π/2 rad/s. By utilizing the same constant gains
selected in the continuous-time controller, the simulation has
been repeated by considering the realistic sample-data scenario
with a sampling frequency of 5Hz (blue curve). Note that with
such a choice the equilibrium point E = 03 is unstable and the
velocity increases above the desired limits. Finally, the black
curves show the results obtained with the proposed sampled-
data adaptive controller. The performance si better than the
continuous-time controller design, in terms of manoeuvre exe-
cution speed while satisfying stability and velocity constraints.

5 CONCLUSION

This abstract presented an HBVS control scheme that explicitly
uses the homography matrix in the controller design and con-
siders the intrinsic sampled-data nature of the visual control
system. By solving a constrained optimization problem, the
proposed controller can automatically select the control gains,
at each sampling instant, that ensure the global asymptotic
stability of the closed-loop system. This is possible since, in each
sampling interval, the sampled-data system is linear and the
homography dynamics time evolution can be written explicitly.
Thus, the stability constraint can be written in terms of the time
evolution of the Frobenius norm of the homography error. We
proved that translational and rotational control gains always
exist that ensure global asymptotic stability. The optimization
algorithm, demonstrated to be feasible, finds the best control
gains that maximize the execution speed of the approaching
manoeuvre to the target pose while satisfying the camera
velocity constraints.
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Deep Learning-Based Feature Extraction for Robust Visual SLAM in
Challenging Indoor Environments

Marco Legittimo1, Francesco Crocetti1, Giuseppe Mollica2, Mario Luca Fravolini1,
Gabriele Costante1, Paolo Valigi1

Abstract— Autonomous robot navigation relies on its ability
to understand its environment for localization, typically using
a Visual Simultaneous Localization And Mapping (V-SLAM)
algorithm that processes image sequences. In this work, we
propose LF2SLAM, “Learned Features For SLAM”, a hybrid
method for navigation in challenging indoor scenarios, like
low-light conditions. It integrates a robust data-driven feature
extraction within a classic geometric VO estimation pipeline.
In particular, we train a deep neural network for feature
extraction and integrate it into one of the most used state-
of-the-art algorithms: ORBSLAM3. We developed a novel loss
function employing a binary mask for filtering the informative
features. The experimental evaluation shows that our approach
has remarkable generalization capabilities in scenarios that
differ from those used for training.

SUPPLEMENTARY MATERIAL

Code: github.com/isarlab-department-engineering/LFFS

I. INTRODUCTION

Vision-based algorithms like VSLAM and VO have gained
traction in robotics due to decreasing sensor costs and size
[1], [2]. While state-of-the-art methods like ORB-SLAM3
and DSO demonstrate effectiveness, their hand-crafted fea-
ture extractors lack robustness in non-ideal conditions [3],
[4], [5]. Hybrid methods, combining CNN feature extraction
with geometric models, have addressed this issue [6], [7],
[8], [9]. However, their potential in challenging environ-
ments is still underexplored. We propose LF2SLAM, a novel
approach leveraging the Superpoint feature extractor and
Monodepth2’s image warping framework [10]. An image
reconstruction loss is introduced to promote learning of pose-
specific sparse features. The learned extractor then replaces
ORB in ORBSLAM3.

II. METHDOLOGY

Our algorithm leverages the Superpoint algorithm (SP)
[11], adapting it to extract sparse keypoints and descriptors
within an image for pose estimation purposes. Specifically,
we combine the Superpoint network with the Monodepth2
[10] (MD2) framework: SP is a CNN that extracts sparse
features in an image. It consists of an Encoder-Decoder

1The authors are with the Department of Engineering, University of
Perugia, 06125 Perugia, Italy. email:{francesco.crocetti,
gabriele.costante, marco.legittimo,
mario.fravolini, paolo.valigi}@unipg.it.

2The author is with ART Spa, Voc. Pischiello, 20 - 06065 Passignano
sul Trasimeno. email:giuseppe.mollica@artgroup-spa.com

This work was in part supported by Fondazione Cassa di Risparmio di
Perugia - Project: DEIMOS - “droni ecologici intelligenti per il monitorag-
gio di oliveti sostenibili”

Fig. 1: Comparison between the hybrid LF2SLAM and the state-
of-the-art ORBSLAM3 approaches: LF2SLAM achieves better per-
formances than the ORB geometric algorithm in low light environ-
ments.

architecture in which only the Encoder layers have learnable
parameters. To train the SP network to estimate features
suitable for VO purposes, we integrate it within the MD2
training framework. This is achieved by modifying the
original photometric loss used in MD2 as the sum of three
components:

L = αLSP + βLsparse + γLSPconst , (1)

where LSP embeds the original photometric loss including
the keypoints masks computed from the SP network, Lsparse

and γLSPconst are two regularization terms for forcing the
training to select a number of feature points close to an
assigned desired value and for imposing that the extracted
keypoints should not excessively deviate from those com-
puted by the original SP model [11]. After optimization,
the learned sparse feature extractor is integrated into ORB-
SLAM3, replacing the ORB algorithm and leveraging the
monocular configuration.

III. EXPERIMENTAL SETUP

To assess the accuracy of the estimates of the two algo-
rithms, we employ a summary metric S defined as:

S =

{
ATE+ARE

R2
traj

, if 0 < Rtraj < 1

R2
traj(ATE +ARE), if Rtraj ≥ 1

(2)

https://github.com/isarlab-department-engineering/LFFSLAM


Fig. 2: UNILAB dataset: examples of challenging sequences acquired with a ground robot in low-light and poor-texture environments.

that relies on the Absolute Translation Error (ATE),
Absolute Position Error (APE), and the trajectory length
ratio Rtraj between the estimated and the ground truth
trajectories. We selected EuRoC [12] and the KITTI [13]
as reference datasets, and we collected four challenging
indoor sequences X1, X2, B1, and C1 with non-ideal lighting
conditions using a ground robot in three different indoor
areas of the University Department. Figure 2 shows some
frames extracted from the experimental dataset dataset.

IV. RESULTS AND DISCUSSIONS

In Table I, the experiments on the sequences are per-
formed with the best hyperparameter combination found
in each dataset. The analysis of the results highlights that
LF2SLAM outperforms OS3 in the KITTI/09 sequence and
the UNILAB more challenging sequences. Conversely, our
approach shows comparable performances on the EuRoC
dataset. While the LF2SLAM better performance on the
KITTI dataset is expected since our feature extractor is
trained with images from sequences of the same scenario,
more interesting considerations can be drawn by observing
the results on EuRoC. Despite our approach being tested on
a scenario different from that used for training, it exhibits
comparable performance to OS3, which proves its gener-
alization capabilities. The quantitative performance on the
UNILAB dataset, instead, demonstrates that the proposed
LF2SLAM achieves considerably higher scores compared to
the OS3 baseline. These results are remarkable considering
the more challenging sequences of this dataset, characterized
by sudden light changes and texture-less scenarios. While
our approach exploits the convolutional feature extraction to
achieve robustness against these conditions, OS3 frequently
loses track due to the poor extracted keypoints.

V. CONCLUSIONS AND FUTURE DIRECTION

This paper introduces LF2SLAM, a hybrid framework for
VSLAM. It uses a unique training method to extract features
for image-based pose estimation. Once trained, it was inte-
grated into the OS3 pipeline. The approach shows excellent
generalization across various environments and outperforms
the OS3 baseline in challenging conditions. Future work
will focus on improving binary descriptor estimation and
optimizing for extreme conditions.
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Recent Developments in Dynamical-System Analysis

(Self-Similarity and Time-Harmonic Structures) and

Educational Activities (Kids in Control)
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Rome, Italy, verrelli@ing.uniroma2.it.

Abstract: This extended Abstract hints at some recent developments in the analysis of
dynamical systems, including both an innovative result and an educational fall-out. Analysis.
Starting from the most recent findings, by the author, regarding self-similarity in walking
and swimming (in its simple and enhanced nature), a new research direction – involving the
tennis framework and, in particular, relying on experimental results on the forehand – has been
originally defined and highlighted, with the theoretical derivations and the experimental results
being in line with all the previous research carried out by the author within different frameworks.
Education. Kids in Control is a control-centered workshop that has been conceived to promote
STEM (Science, Technology, Engineering, and Mathematics) skills and inclusion for kids from
8 to 10 years old. It includes activities and devices developed to improve the learning process
while fostering the creation of a new teaching and learning style, based on the most advanced
digital technologies (allowing for the aforementioned self-similarity analysis). It also aims to be
firmly rooted in the foundations of pedagogy and in the interaction between teacher and learner,
especially in its International School (IS) version.

1. CYCLIC HUMAN MOVEMENTS AND
TIME-HARMONIC STRUCTURES

It is well-known that the golden ratio φ = (1 +
√

5)/2 ≈
1.618 is (the positive) solution to the equation x2 = 1 +
x, [4]). It is related to Euclid’s problem of cutting self-
proportionally a given segment and exhibits a host of geo-
metric and aesthetic properties, making it a subject of fas-
cination in art, architecture, and design [3]. Furthermore,
the Fibonacci sequence exhibits numerous intriguing prop-
erties related to its divisibility, modular arithmetic, and
continued fractions, which have implications in number
theory and algebraic geometry, as well as in cryptography
and digital signal processing [5]. From the arrangement of
petals in flowers and the spirals of nautilus shells to the
branching patterns of trees and the proportions of human
anatomy, the Fibonacci sequence is deeply ingrained in
the fabric of the natural world, extending its ubiquity far
beyond the realm of mathematics. In addition, in computer
algorithms, Fibonacci numbers are widely utilized in op-
timization problems and dynamic programming, while in
music, composers employ Fibonacci-inspired rhythms and
structures to create harmonious compositions [2].
Now, very recent research efforts by the author (see all the
references within [8]) – starting from [1] experimentally
characterizing the walking gait –, have been dedicated
to theoretically explaining the experimental occurrence of
time-harmonic motor patterns in human repetitive move-
ments. The resulting discoveries by the author have found
out that such patterns: i) are implicitly defined by the
golden ratio when it occurs as the ratio 1 of movement

1 Just accounting for the ratio between the consecutive phase
durations allows the gait cycle duration to be a parameter freely
characterizing the individual subject’s walking.

sub-phases durations composing a generalized Fibonacci
sequence of finite length [6]; ii) also meaningfully exist
in running and swimming. Indeed, the golden ratio is
related to a Fibonacci sequence of finite length (namely,
a, b, c, d, . . .), through the explicit solution to the discrete-
time, second-order auto-regressive scalar system:

y(k + 2) = y(k + 1) + y(k), k = 0, 1, . . . ,

with y(0) = a, y(1) = b and y(2) = c, y(3) = d, . . ., or its
state-space representation:

ξ(k + 1) =Mξ(k), k = 0, 1, . . . ,

with ξ(l) representing the vector [y(l), y(l + 1)]T, l =
0, 1, 2 . . ., and M denoting the square 2 × 2 matrix
[0, 1; 1, 1]. On the other hand, neurophysiological analy-
ses have suggested that smooth and efficient locomotor
movements might be generated by the strict relationship
between cortical input, sensory feedback, and neuron net-
works named central pattern generators CPGs: the nervous
system seems to reduce the complexity of controlling the
redundant degrees of freedom associated with the bilateral
multi-joint limbs, while dictating timing and coordination
of muscle activation patterns. Even though swimming does
not appear to belong to CPG-based instinctive patterns,
front crawl swimming apparently possesses a rhythmicity
similar to walking and running: it is induced by repetitive
training for a long enough time, with technique automa-
tizing learning of complex movements.
In the latest [8], just after reviewing the different scenarios
of walking and swimming, in which time-harmonicity has
been proven to occur, and stitching them together on
a common logical platform, a new research direction is
defined, and transposition arguments are adopted. Such a
new research scenario involves the tennis framework. The



self-similarity analysis (in its simple nature and enhanced
– namely, stronger – variant) is originally extended to find
surprising time-harmonic patterns in the forehand 2 exe-
cutions that are illustrated by experimental results. Such
experimental results are thus in line with the ones obtained
in the previous papers concerning different frameworks in
terms of self-similarity and enhanced self-similarity. This
might confirm that, differently from walking and analo-
gously to swimming, tennis technique is crucial: to become
an expert player, subjects must undergo a considerable
amount of practice and instruction that makes the player
move from non-self-similarity to self-similarity up to en-
hanced self-similarity.

2. KIDS IN CONTROL: EDUCATIONAL ACTIVITY
AND DEVICES FOR IS STUDENTS

With advances in science and technology, studies have
been devoted to figuring out the main issues regarding
children’s learning. Indeed, interactive learning tools facil-
itate the possibility for students to develop an intuitive feel
and understanding. Relevant examples can be mentioned
(see [9] for some of them). Within this framework, Kids
in Control is a control-centered workshop that has been
conceived to promote STEM skills and inclusion for kids
from 8 to 10 years old. It has been sponsored by the
IFAC Activity Fund action and supported by the IFAC
Technical Committee 9.2. Systems and Control for Societal
Impact whose Chair is Mariana Netto, from Université
Gustave Eiffel. Kids in Control aims at complementing
the successful experience of Girls in Control [7] [GIC,
Workshop and Material - (ifac-control.org)] within an age
in which gender differences are not as marked as during
puberty and background & foreknowledge are almost uni-
form. Helping kids of a young age (8-10) with a pretty
positive attitude towards STEM actually choose STEM in
higher education, while, in particular, early rooting out
related skills and capabilities, constitutes an important
part of the teacher’s role. With respect to this, the goal
of Kids in Control is to help kids of 8-10 years achieve
self-efficacy towards technology. The most beautiful ideas
lying at the root of the design of control strategies are
presented before the kids’ eyes, with a simple language
that aims at being also emotionally- and intellectually-
involving. A tasting of beauty in unveiling certain beautiful
aspects of mathematics that lie at the root of the design
of control algorithms and strategies is provided. Special
emphasis is devoted to the psychological processes driving
the expression. Videos are further included in order to
render the kid more pleasant.
In the latest [9], the developments of such a project are pre-
sented with reference to its version specifically dedicated
to ISs, Responsible: C.M. Verrelli. ISs allow for the use of
a uniform language (English) world-wide while exploiting
the ability of the elaboration of the human mind through
distributed knowledge and enabling technologies. A 3-hour
experience (by C.M. Verrelli, M. El Arayshi, M. Tiberti)
is envisioned, in which the kids:

2 For a right-handed player, the forehand is a stroke that starts on
the right side of the player’s body, continues across the body as the
impact with the ball occurs, and ends up on the left side of the body.
It is considered the easiest and most natural shot to master.

i) experience the research-world-taste and are made fa-
miliar with intuitively understandable applications of
dynamic systems analysis & automatic control in var-
ious fields of life, including recognition of the golden
ratio occurrence in temporal analysis of walking gaits &
swimming strokes % tennis forehand through wearable
sensors/video devices, besides high-performance control
of elevators, automotive control, control of robots;

ii) are made familiar with intuitively understandable
ideas of analysis & control strategies (involving sensors,
actuators, feedback, dynamic evolution);

iii) are made familiar with https://scratch.mit.edu/, a
visual coding platform, to learn, subconsciously, in a
playful way, how to create programs, and, this way,
increase their self-efficacy towards using computer lan-
guages to describe reality;

iv) look at the use of https://www.microbit.org/, a
low-cost educational board that can be programmed
through https://scratch.mit.edu/, as hardware-in-the-
loop to learn the potential of electronics subconsciously,
and, this way, increase their self-efficacy towards man-
aging hardware;

v) understand, from a mathematical point of view, the
design of control algorithms for electric motors and see
their experimental application to DC motors, as well as
to an autonomous electric vehicle with 2 in-wheel motors
(scale 1:10) 3 .
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I. INTRODUCTION 

Technology and society have experienced significant 
changes, affecting the skills and knowledge required by 
engineering students. The job market prompts universities to 
update their programs accordingly. Innovative teaching 
practices and technology-enhanced resources help foster a 
dynamic and inclusive learning environment, aiding students 
in mastering linear systems identification [1], - [3]. So far, few 
experiences describe undergraduate courses on dynamical 
systems identification, with only one integrating a BL 
framework and summative assessment [5], [6]. None combine 
both summative and formative assessments with automated 
personalized feedback. This paper draws from the 
international control community's discussions, supported by 
IFAC and IEEE Technical Committees, to presents a 
structured approach to teaching linear system identification at 
an undergraduate level within a blended learning (BL) 
environment incorporating automated personalized feedback 
[4]. 

II. CONTEXT 

BL combines online and in-person education, creating a 
dynamic and interactive environment that enhances student 
engagement and personalizes the learning experience [7]. A 
key feature of BL is its flexibility, allowing students to learn 
at their own pace while maintaining essential interactions with 
instructors and course materials. Furthermore, BL integrates 
various instructional strategies and resources to accommodate 
diverse learning preferences and schedules. Incorporating 
educational technology into traditional courses enables 
automated assessments and timely feedback, thus improving 
the quality of learning [11], [12], [13]. Shared resources in BL 
include e-books, videos, quizzes, forums, and interactive 
assignments with personalized feedback. These digital tools 
support data-driven evaluation, aiding student self-regulation 
and teacher assessments [13]. In engineering courses, 
MathWorks MATLAB is a popular tool for practical 
simulations and theoretical demonstrations [8]. MATLAB is 
also valuable for automating student and teacher feedback 
processes in BL settings. When combined with tools like 
MATLAB Grader [9], BL has shown positive effects on 
student engagement and satisfaction [10]. 

III. DEVELOPMENT OF A BL COURSE ON MODELLING AND 

IDENTIFICATION OF LINEAR SYSTEM 

A. Requirements 

The course is designed for undergraduate students, and its 
syllabus specifies that 72 hours (equivalent to 9 CFU) are 
allocated for instructional activities planned by the lecturer. 
The total duration is divided into 51 hours of classroom 

lectures and 21 hours of laboratory activities. The course was 
selected to be part of the "e-learning blended" initiative, which 
supports lecturers in integrating digital tools to enhance 
student access to learning. Specifically, the Università 
Politecnica delle Marche, while reaffirming its commitment to 
in-person teaching, promotes the adoption of e-learning 
methodologies to improve learning outcomes, facilitate skill 
acquisition, ease access to studies, and foster the integration 
and dissemination of knowledge. The courses “Modelling and 
Identification of Dynamical Systems” in the Automation and 
Computer Science Engineering degree and “Modeling and 
Optimization for Industrial Processes” in the Management 
degree were selected for the initiative and, thus, included 10 
hours of online activities out of the 72 total hours.  

Instructional themes in the courses were:  
 Introduction to the problem of system identification 
 Recalling the basics of system theory 
 Nonparametric system identification 
 White Noise characteristics and whiteness tests 
 Parametric identification: the black-box approach 
 Models’ families(OE, AR/ARX, ARMA/ARMAX) 
 The predictive approach 
 The least squares method 
 The maximum likelihood method 
 Recursive identification 
 Persistent excitation 
 The validation procedure 
 Introduction to Neural Networks for identification 

B. Tools 

The lecturers developed both the physical and online 
components of the BL course. The structure of the course is 
represented in Figure 1. Traditional face-to-face lessons were 
held at the university facilities according to the regular 
timetable, except for the 10 hours of online learning. 
Laboratory activities were conducted in a hybrid manner [14]. 
Students were assigned tasks using laboratory equipment and 
they were required to upload MATLAB LiveScript reports on 
Moodle, which were graded asynchronously by the lecturer 
via the online platform. The course's online infrastructure 
relied on the Moodle LMS, which integrated various 
preinstalled resources and activities. To enhance the delivery 
of course content, instructors created short video lessons as 
introductory materials for each module thanks to the 
university’s lightboard recording system and multimedia 
facility. These videos elucidated key topics and emphasized 
critical points, thus complementing face-to-face learning both 
as multimedia learning aids and as flipped learning resources. 
Lecturers also incorporated supplementary activities like 
MATLAB Academy's online courses to enhance students' 



proficiency in MATLAB programming, statistics, signal 
processing, and machine learning. These resources 
strategically reinforced students' understanding of key 
concepts, which they could use to build more efficiently new, 
elaborated concepts. The MATLAB Grader tool was also used 
for formative assessments, supporting students' learning by 
providing timely and personalized feedback crafted by 
lecturers. The online infrastructure enabled teachers to 
monitor students' performance throughout the course, utilizing 
data from students' interactions with online materials and 
Moodle's gradebook. Additionally, pre- and post-course 
questionnaires gathered information on students' interests, 
future value expectations, self-efficacy, and perceived 
usefulness of the teaching methods. Figure 2 shows the entire 
structure of the design of the evaluation.  

IV. DISCUSSION AND CONCLUSION 

Implementing the BL approach to a course on modeling 
and identification of dynamical systems showed several 
benefits along with potential areas for improvement. 
Integrating physical and online components, the course 
established a dynamic and interactive learning environment 
that enhanced student engagement and personalized the 
learning experience. Incorporating supplementary resources 
from MATLAB Academy's online courses and using the 
MATLAB Grader tool for formative assessments proved to be 
effective strategies. Students reported great appreciation for 
these tools as they received immediate feedback from the 
platform and improvement suggestions crafted by the 
instructor during tool setup. Furthermore, integrating these 
tools encouraged students to engage in discussions with 
lecturers, mainly when reporting supposed system bugs, 
which helped uncover misconceptions in their knowledge. 
Future enhancements will explore additional features, 
especially those aimed at bridging gaps in prerequisite 
knowledge to ensure a more inclusive learning environment. 

In conclusion, the BL approach showed promising results 
in enhancing student engagement, learning outcomes, and 
skill acquisition. Future iterations of the course could benefit 
from addressing challenges related to the allocation of time for 
online resources and further refining the balance between 
physical and online components to optimize the learning 
experience. 
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I. INTRODUCTION 
Control engineering education is widely debated among 

professionals and academics in the field. On the one hand, 
there is the need to transmit the rigorous notions of control 
theory. On the other hand, there is the need to adapt curricula 
to the skill demand of the industry. The ongoing discussion 
highlights how control engineering education has been 
evolving both in terms of curriculum content [1], [2], design 
[3], and delivery [4], and in terms of technological tools that 
can enhance learning [1], [2], [3]. The issue of restructuring 
the first course in control engineering at university is widely 
debated and many proposals arouse to align the pathway of 
the course educational contents [5], [6], as well as the 
assessment of the learning outcomes [7], [8].  

The evolution of teaching methodologies in automatic 
control has revealed significant challenges and opportunities 
for collaboration among educators. Two main issues that 
influence workflows are: 1) the systematic difficulty in 
exchanging instructional materials with colleagues, and 2) 
the complexity of establishing commonalities in the 
courses’ programs across different institutions and 
nations. These challenges are interconnected, impacting both 
the efficiency of teaching and the enrichment of student 
experiences. IFAC’s Technical Committee (TC) 9.4 is 
investigating solutions to these problems that rely on open 
databases of instructional materials as enhancers of teaching 
and learning. Such databases offer valuable content for 
teaching activities, scaffolding, and self-assessment provided 
that robust taxonomies are identified and used to index the 
instructional materials to avoid the subjective biases. This 
contribution provides an overview of the solution being 
investigated by this TC and how it may improve collaborative 
teaching and learning in automatic control. 

II. CONTEXT 
Control engineering education faces the challenge of 

meeting several demands, including increasing its 
attractiveness, incorporating relevant and rapidly evolving 
content, and fulfilling the growing need for teaching skills 
beyond technical competency. Addressing these needs 
effectively can be achieved by fostering the sharing of high-
quality resources and facilitating collaboration in higher 
education. Although some initiatives and bureaucratic 
infrastructures supporting collaboration and resource sharing 
already exists, specific needs must be addressed to optimize 
these efforts. Many groups worldwide put a lot of effort in 
creating, adjusting and delivering effective and engaging 
educational resources in control engineering. Usually, each 
lecturer creates or adapts the educational material intended for 
the course. Unfortunately, this wealth of materials and 
knowledge about didactics of control engineering is usually 

not shared and cannot be exploited for further refinements, 
testing or optimization, thus hampering the creation of 
efficient methodologies to teach control systems. The creation 
of validated methodologies and resources for control 
engineering could eventually lead to improve teaching quality, 
decreasing the workload of lecturers, and also establishing 
benchmarks across control engineering curriculum.  

To fill the gap the present paper introduces a platform 
based on a community of practice (CoP) approach [9], [10]. 
CoP members share a common interest and focus on sharing 
best practices and generating new knowledge to advance their 
professional field. Ongoing interaction is crucial, often 
facilitated through face-to-face meetings, e.g., conferences, 
and web-based collaborative platforms to communicate, 
connect, and carry out community activities. The present work 
aims at describing a collaborative platform to find and share 
effective and validated open educational resources (OERs) in 
control engineering.  

III. THE PLATFORM 
 The database, hosted at https://faceittools.com, is 
actually a portal that enables users to: 

1) create mindmaps of the contents of the own courses, 
2) upload or create assessment material, 
3) share their own assessment material and mindmaps with 
selectable groups of colleagues and students, 
4) find and reuse assessment material and mindmaps from 
other colleagues, 
5) organize such assessment material in quizzes, 
6) associate such quizzes to the mindmaps of the own 
courses, or specific parts of them, 
7) administer these quizzes to students, 
8) collect and analyse the performance of such students on 

such quizzes. 

The current available resources are materials indexed by 
contents (prerequisite and developed knowledge) and by 
complexity (through the using-explaining taxonomy, [7]). 

To prepare such teaching and assessment resources in 
control engineering several underlying issues are considered: 

1. Establishing a universal method to describe the 
difficulty and complexity of instructional material to facilitate 
easy comparison, searching, and communication among 
educators, as well as enabling joint teaching. 

2. Agreeing on a common notation for standard items in 
control education (e.g., transfer functions, signal names) to 
allow for direct sharing of materials without the need for 
adaptations or defining a set of notation standards and 
translation lookup tables to enable convenient switching of 
notations. 

https://faceittools.com/


3. Creating a universal system to organize and categorize 
instructional material in control engineering to facilitate easy 
comparison, recognition of courses taken abroad, and joint 
teaching. 

4. Setting up an efficient method for the technical sharing 
of teaching materials with minimal administrative effort. 

We note that the taxonomy used to index the material 
(actually to label the nominal difficulty of exam or test 
questions in control engineering, see more details in [7]), 
measures the complexity of the solutions of such questions, 
and this through a two-dimensional approach (complexity of 
the explanations given in the solution, complexity of the 
formulas used in the solution). This two-dimensional 
approach proved effective and consistent among experts. 
Moreover, A graphical representations of courses allow for the 
visualization of content flows and hierarchical structures of 
the material. These graphs can help automate the validation of 
student exchanges and provide a common language between 
students and teachers, enhancing the understanding of course 
content and knowledge levels. 

IV. DISCUSSION 
Lecturers globally spend significant time creating new 

instructional materials, which often remain within local 
networks and are not widely accessible. Storing and indexing 
this material in a computer-accessible database would benefit 
the entire control community for several reasons:  

• peer reviewed materials increase the validity of the 
OERs 

• OERs indexed using a recognized taxonomy ensures a 
standard categorization and description of educational 
content. This consistency helps educators and students 
understand and compare resources more easily, 
improving searchability of educational resources. 

• it can help align educational resources with curriculum 
standards and learning objectives. This alignment 
ensures that the materials support the intended learning 
outcomes and educational goals. 

• it improves communication among educators, 
students, and other stakeholders. It provides a shared 
language for discussing educational content, 
instructional strategies, and assessment criteria. 

• it can support differentiated instruction by clearly 
identifying the complexity and skills addressed by each 
resource. This allows educators to select materials that 
match the diverse needs and abilities of their students. 

• educators can map student achievements to specific 
levels, providing a clear picture of the students’ 
learning journey across a standard benchmark. 

• when developing new educational courses, referring to 
an existing wealth of resources ensures that the 
resources are comprehensive and cover all necessary 
aspects of the subject matter. It also helps identify gaps 
that need to be addressed. 

• when different curricula are involved, the repository 
may highlight connections between different subject 
areas promoting a more integrated and holistic 
approach to control engineering education. 

• the taxonomy-based indexing of educational resources 
allows for more effective data analytics. Educators and 

researchers can analyze patterns, effectiveness, and 
usage of resources, leading to data-driven 
improvements in teaching and learning. 

• authorship tracking, which ensures proper attribution 
to authors, is recognized and should account for the 
professionalism of the author. 

Despite the many benefits of the proposed tool and the full 
support of the IFAC community, the platform still faces 
several challenges, both in technological development and 
user adoption. Technologically, the ability to edit content 
requires robust mechanisms to maintain the validity and 
usability of the material, ensuring precision and correctness. 
Regarding user adoption, some issues remain unresolved. The 
platform must demonstrate its full operational capacity to 
encourage users to transition from traditional paper textbooks 
to the new system. 

V. CONCLUSION 
Due to rapid technological advancements and the resulting 

increased demands on control engineering educators, sharing 
materials and joint teaching have become increasingly critical. 
This challenge can be addressed by enhancing the final 
domain of the community of practice in control engineering: 
building a shared repertoire of resources and ideas that sustain 
a core of collective knowledge about control engineering 
education. To this end, a platform designed as a database and 
sharing hub is introduced to overcome barriers that discourage 
collaborative teaching among educators. Several challenges 
remain, including (i) establishing a common notation for 
easier material sharing, (ii) developing mechanisms for fair 
and well-founded decisions on module acceptance for 
students returning from abroad, and (iii) creating structures for 
joint teaching of modules by participating educators, both 
onsite and digitally. 
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EEG Data-Driven Control and Risk Prediction in
Roundabout Maneuvers

Enrico Zero1, Alessandro Bozzi1, Simone Graffione1, Roberto Sacile1

I. INTRODUCTION

Continuous technological advancements are enhancing life
quality across domains, with biomedical devices like Elec-
troencephalogram (EEG) widely used in clinical settings for
diagnosing neurological disorders and researching brain func-
tion. EEG also powers Brain-Computer Interfaces (BCIs),
enabling control over devices [1] and robotic arms by decoding
EEG signals [2]. It’s increasingly applied in biomedical and
robotic control theory [3], and emerging interest focuses on
using EEG for vehicle control, enhancing safety and driving
experiences. Emotions like fear and anxiety are studied in
driving simulations [4], and risk-taking behavior is predicted
successfully [5]. This research employs a Support Vector
Machine (SVM) to predict driver-perceived risk in roundabout
maneuvers. Roundabouts challenge autonomous vehicles, re-
quiring coordination with human-driven vehicles (HDVs) [6].
Integrating EEG with vehicle control systems allows vehicles
to respond to the driver’s mental state, potentially reducing
collisions. For example, detecting distraction or drowsiness
prompts alerts or adjusts speed and lane position. This fusion
of automotive technology and neuroscience aims to enhance
road safety by making driving more responsive and adaptable.

II. METHODS

A. System Architecture

In vehicle safety and control, understanding the driver’s risk
perception is crucial for preventing potential road hazards.
Drivers constantly assess traffic, road conditions, and environ-
mental factors to gauge risk, influencing their behavior and
decision-making, which impacts overall road safety.

Driver

commands

Screen Driver

EEG data

SIMULATOR

Visual

information

SVM

Fig. 1: System design for network testing.
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Fig. 1 illustrates the system architecture. The setup integrates
the SCANeR Studio simulator with a display interface, cre-
ating a realistic driving environment and providing real-time
feedback to the driver, including driving style and dashboard
information. Communication between the driving setup and
the simulator is facilitated via a serial bus interface. Addition-
ally, the Unicorn Hybrid Black EEG cap with eight electrodes
captures the driver’s brain activity. This data is used to train a
SVM model to identify patterns indicating different levels of
driver risk.

B. Data acquisition, synchronisation and normalisation

During the data acquisition phase, the volunteers engaged
in a three-minute simulation within a roundabout environment.
Electrodes were strategically placed over the sensorimotor cor-
tex for motor imagery-based BCIs, and over central, parietal,
and occipital areas for P300 paradigms. Additional electrodes
targeted parietal regions for steady-state visual evoked poten-
tial (SSVEP) and code-based VEP paradigms. Participants had
real-time decision-making capabilities mirroring actual driving
scenarios, allowing them to select paths and maneuvers. A cus-
tom application integrated into the simulator software captured
comprehensive data about surrounding vehicles within the
roundabout, including their position, speed, orientation, and
location. This data facilitated manual assessment of driver risk,
categorized into three levels: 1 - low risk, 2 - moderate risk
with increased attention needed, and 3 - high risk indicating
proximity to other vehicles with collision risk. Synchronizing
vehicle data with EEG readings posed challenges due to
differing collection frequencies: 250 Hz for EEG and 20
Hz for the simulator. To bridge this gap, an oversampling
technique was employed to align ScanerStudio data with EEG
data, ensuring consistent samples between successive EEG
readings. Each EEG signal underwent filtering to eliminate
specific frequencies and normalization to enhance data quality
for SVM processing. EEG signals were normalized relative to
a baseline ’resting state’, EEGi

c, captured while candidates
were seated but not actively driving. For each candidate i, the
final EEG dataset, denoted as EEGi

final, is derived as follows:

EEGi
final =

EEGi − EEGi
c

EEGi
c

(1)

C. Predictive Model

In the SVM model design, the choice of the kernel function
is crucial. In this research, the Gaussian kernel function
is utilized due to its ability to capture complex nonlinear
relationships present in the EEG data, thereby enhancing the



Fig. 2: Scenario designed for the driving sessions and tests.

model’s capacity to discern subtle patterns indicative of dif-
ferent risk levels. When assessing the accuracy of the results,
especially in scenarios with unbalanced classes, the Matthews
correlation coefficient (2) serves as a valuable metric. This
coefficient is commonly employed in biomedical applications
[7] and is widely used in machine learning contexts to assess
the effectiveness of binary classifications. Furthermore, its
extension to multiclass scenarios is also widespread.
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III. CASE STUDY

The experiment was performed by three men between 28
and 33 years old with driving licenses. The driving scenario
shown in Fig. 2 is a simulation that features a dynamic envi-
ronment with a two-lane roundabout, which differs from the
usual single-lane configurations found in other road segments.
The inclusion of a two-lane roundabout inherently increases
driver attention by accommodating a higher volume of vehicles
travelling through the roundabout simultaneously. In order to
achieve realistic traffic dynamics, the roundabout is populated
with a diverse mix of vehicles controlled by SCANeR Studio.
It is important to note that the software exercises complete
control over these vehicles, directing their trajectories within
the roundabout in a randomized manner. The deliberate in-
troduction of variability in vehicle movements enhances the
authenticity of the simulation, providing a comprehensive and
true-to-life representation of the obstacles that drivers may
encounter.

IV. RESULTS

This study investigates the correlation between brain activity
and road risk. The data from multiple driving sessions are pre-
processed as explained previously. The dataset was split into
two subsets: one for training (50% of the data) and one for
independent testing. The confusion matrices in Fig. 3 show
the results. The precision was 86.9% for the validation set and
87.1% for the test set, with positive predictive values exceed-
ing 80% for all samples. This highlights a significant correla-
tion between brain activities and the risk levels associated with
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Fig. 3: Test confusion matrix showing an accuracy of 87.1%

navigating roundabouts. The Matthews Correlation Coefficient
(MCC), calculated from the confusion matrix in Fig. 3, was
75.6%, indicating good prediction accuracy. Additionally, a
Pattern Recognition Neural Network (PRNN) model with ten
hidden layers was evaluated. It achieved 80% performance on
the initial test set and comparable performance on another test
set, with an MCC of 62.5%.

V. CONCLUSION

This study introduces a novel method using EEG signals
from the Unicorn Hybrid Black EEG cap to estimate risk
levels. Employing a SVM with a fine Gaussian kernel, the
research achieves high accuracy in classifying EEG data into
three risk categories. The SVM outperforms the PRNN, under-
scoring its superior classification capabilities and reliability for
risk assessment in diverse scenarios. Future research aims to
enhance this model’s applicability by extending it to dynamic
speed trend assessments and testing across varied real-world
conditions.
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A Lightweight Encryption Approach for Data Confidentiality in
Critical Infrastructures
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Abstract— Guaranteeing data confidentiality while allowing
agents to reach an agreement on some shared variables is
an essential feature to foster the adoption of distributed
protocols. In this submission, we take a geometrical perspective
to implement a novel encryption methodology via coordinate
shifts. This choice guarantees, on one side, the existence of
an uncountable infinity of possible vectors and, on the other
side, provides a control-theoretical viewpoint on encryption that
naturally blends with a dynamical system. Leveraging vector
coordinate shifts, our method excels in efficiency and speed of
implementation, ensuring compliance with the stringent time
constraints of real-time protocols. This makes our method easily
applicable to a wide range of critical infrastructures, including
the GOOSE protocol for digital substations communication in
power grids. Indeed, the adherence to the IEC 62351 standard,
governing security requirements for the GOOSE protocol, has
always been an open challenge as it presents practical issues due
to the conflict between time requirements imposed by operations
and traditional cryptographic procedures.

Index Terms— Cyber-Physical Systems, Cryptography, Net-
worked Systems, Security.

I. INTRODUCTION

The growing need to provide resilience and privacy
guarantees in the context of distributed algorithms and,
in particular, in applications to distributed consensus has
led to researchers’ attention being directed in this regard
in recent years. A class of methods endows the network
with privacy-preservation features against honest but curious
nodes, i.e., each agent in the network tries to hide its initial
condition from the others [1], [2], while other works focus
on eavesdropping resistance, i.e., the need to protect the state
of each agent, thus including both the initial and consensus
values, from malicious third parties [3]. A powerful tool
to enforce data confidentiality is cryptography; however,
traditional encryption methodologies (e.g., RSA) are difficult
to apply on networks working in real time as they usually
are computationally intensive and time-consuming. In [1]
authors propose homomorphic encryption, which enables
a class of mathematical operations to be performed on
encrypted data but can operate exclusively with states that are
integers and introduces quantization errors. Another popular
approach for privacy preservation in a distributed averaging
process relies on the idea of differential privacy [4], which
masks state variables by injecting carefully designed noises;
however, these approaches often result in a trade-off between
accuracy and privacy.

1Department of Engineering, University Campus Bio-Medico of Rome,
Via Alvaro del Portillo, 21 - 00128 Roma, Italy. E-mails: {c.fioravanti,
l.faramondi, g.oliva, r.setola}@unicampus.it.

This work was supported by the Italian National Project INAIL BRIC
2023 ID 44 “Industrial Cyber Shield (ICS)” under CUP C83C22001460001.

In this submission, we present a new geometric-based
methodology [5] for lightweight encryption, that can be
applied to distributed continuous-time consensus algorithm;
the method provides resistance against eavesdroppers over
a directed and strongly connected graph topology (thus,
allowing the handling of asymmetric situations, such as the
case of wireless nodes or mobile agents equipped with direc-
tional emitters/receivers), without introducing quantization
or approximation errors. The proposed scheme also extends
to enforce privacy, by assuming each agent’s hidden state
is influenced by a disturbance signal for a finite amount
of time. Interestingly, by resorting to coordinate shifts, our
geometrical approach does not have a combinatorial nature,
as there is an uncountable infinity of possible choices for
the constant weight vector, which makes it more robust to
brute-force attacks. In addition, we show how the application
of a geometric-based cryptographic methodology can be
the blueprint for addressing a security problem within the
GOOSE protocol for digital substations in power grids [6].

II. A GEOMETRICAL APPROACH FOR CONSENSUS

In [5] we consider a network of n agents, interconnected
by a graph G = {V,E}, each holding a scalar initial
condition wi(0). We evaluate a scenario where the legiti-
mate nodes are willing to collaborate in order to reach the
weighted average consensus value, i.e., each agent i aims to
reach a steady state that satisfies limt→∞ wi(t) = ξTw(0),
where ξT is the left eigenvector of the Laplacian matrix L
corresponding to the zero eigenvalue, suitably scaled so that
1T
nξ = 1. However, the agents do not want unintended third

parties (or eavesdroppers) to become aware of their states.
To this aim, each agent maintains an augmented state with
m state variables xi(t) = [xi1(t), . . . , xim(t)]T ∈ Rm. In
this view, the agents exchange their vectorial states xi(t)
instead of the hidden scalar states wi(t). Moreover, each
agent i selects an initial condition xi(0) ∈ Rm so that
qTxi(0) = wi(0). At this point, each agent i selects an
(m− 1)×m matrix Qi such that the m×m matrix

Ti =

[
qT

Qi

]
is invertible; matrix Ti represents a coordinate shift such that

Tixi(t) =

[
qTxi(t)
Qixi(t)

]
=

[
wi(t)
∗

]
, (1)

i.e., the coordinate shift allows to obtain wi(t) from xi(t). In
this way, the agents can interact protecting their states from
third parties while being able to reconstruct the state of their



neighbors based on q, which is known to each agent (e.g.,
because it has been securely pre-deployed). Moreover, let us
consider a scenario in which agents also want to enforce the
privacy of their initial conditions against honest but curious
neighbors. To this aim, we modify the dynamics as follows

ẋi(t) =
∑

j∈N in
i

(xj(t)− xi(t)) + T−1
i

[
ui(t)
0m−1

]
, (2)

where ui(t) is such that∫ t∗i

0

ui(τ)dτ = 0, ui(t) = 0 for t > t∗i (3)

and t∗i ≥ 0. In other words, each agent selects a time instant
t∗i and designs the noise ui(t) so that the cumulative effect
is zero at time t∗i , while ui(t) becomes zero afterward. In a
compact form, the proposed dynamics for the agents read as
follows ẋ(t) = − (L⊗ Im)x(t) + T −1z(t), where

T =

T1

. . .
Tn

 , x(t) =

x1(t)
. . .

xn(t)

 , z(t) =


u1(t)
0m−1

. . .
un(t)
0m−1

 .

The following theorem shows that, in spite of the presence
of nonzero values ui(t), the hidden dynamics converges to
the intended consensus value.

Theorem 1: Under the assumptions that the agents are
interconnected by a strongly connected graph and that ui(t)
satisfies Eq. (3), the proposed dynamics is such that

lim
t→∞

qTxi(t) = ξTw(0), (4)

where ξ is the left eigenvector of L corresponding to the
zero eigenvalue, with 1T

nξ = 1.

In order to mitigate the requirement of a secure pre-
deployment of the vector q, we discuss an extension where
each agent i relies on a different and locally established
vector qi ∈ Rm. In particular, let us assume that each agent
i selects qi ∈ Rm and xi(0) ∈ Rm such that qT

i xi(0) =
wi(0). Moreover, each agent chooses Qi ∈ R(m−1)×m such
that T i =

[
qi, Q

T
i

]T
is invertible. In this view, each agent i

maintains an augmented state xi(t) ∈ Rm, which is updated
as follows

ẋi(t) = T
−1

i

∑
j∈N in

i

(
T

(i)

j xj(t)− T ixi(t)
)
+ T

−1

i

[
ui(t)
0m−1

]
,

(5)
where T

(i)

j =
[
qj , ∗

]T
, and is not required to be invertible.

In particular, the lowermost block of T
(i)

j is chosen locally
by agent i (for the sake of simplicity, in the following we
will consider it equal to QT

i ). The main improvement of this
variation is that, to be able to compute wi(t) each node just
needs the vectors qi of its in-neighbors, which can be shared
locally via a single transmission without the requirement to
provide them to the whole network.

III. APPLICATION TO DIGITAL SUBSTATIONS

In recent years, increasing attention has been paid to
security issues affecting critical infrastructures such as power
grids, on both network and physical layers. With the progres-
sive development of cyber threats, some recommendations
have been provided in the new IEC 62351 standard to
secure the GOOSE protocol [7]. Specifically, the IEC 62351
standard requires an authentication approach for protecting
the integrity and authenticity of the GOOSE messages, while
it recommends encryption for protecting data confidentiality.
Although the recommendations imposed by the IEC 62351
standard are mandatory to remedy the security gaps in the
GOOSE protocol, their actual application clashes with the
operational speed requirement of the IEC 61850 standard,
which specifies that GOOSE messages must be generated,
transmitted, and processed in less than 3 milliseconds [8].

To fill this gap, we propose in [6] the application of the
geometric approach to develop an encryption and authenti-
cation methodology that can be particularly fast and easy to
implement, while preserving the integrity and confidentiality
characteristics of the messages. The main strengths of the
proposed approach are summarized below.

(i) The proposed authentication and encryption algorithms,
based on a geometric-cryptographic mechanism, have exe-
cution times that prove to be well below the 3-millisecond
constraint. Furthermore, by using such algorithms, the in-
tegrity and confidentiality of GOOSE messages are provided
without changing the format structure of the messages.

(ii) The implementation of the authentication and encryp-
tion algorithm can reduce the processing time required to
detect data manipulation in GOOSE messages.

(iii) The proposed algorithms can be applied to GOOSE
messages of any length and are effective in several infras-
tructures without requiring the use or addition of specific
hardware components.
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MUSAPOEM (Multi Satellite Proximity Operations for Rendezvous and Docking Missions in Earth
and Moon Orbits) is a project co-funded by the Italian Space Agency, which aims at advancing au-
tonomous multi-agent proximity operations in space. The project is a collaborative effort involving the
Polytechnic of Turin, the University of Pisa, Argotec, and Kurs Orbital. Its objective is to advance
the state-of-the-art in modelling, guidance, navigation, control, and identification algorithms for multi-
vehicle autonomous proximity operations in space, defined as operations where the relative distance
among the satellites is less than a few tens of kilometres. The project’s reference scenario involves four

Figure 1: Concept of operation Musapoem

satellites in orbits around Earth or the Moon (see Figure 1):

• Target vehicle: A passive satellite in a Kepleian (Earth case) or non-Keplerian (Moon case) orbit
with some uncertainty. This satellite is the mission’s focus and shall be observed, monitored, and
approached by the formation.

• Chaser: An active vehicle aiming to approach the target through a rendezvous sequence. The
chaser, equipped with a limited number of sensors (radar, lidar, laser) and power, performs ren-
dezvous and docking with the target. It can communicate and collaborate with other satellites to
support the rendezvous operations.

• Observer Satellite: Equipped with cameras and radar to support navigation during the rendezvous
operation, it is positioned on a trajectory that maximizes visibility and minimizes station-keeping
control expenses.

• Communication Satellite: This satellite maintains the link between the formation and Earth.
Its trajectory is chosen to maximize visibility with other satellites and Earth while minimizing
station-keeping control costs.

During the project, it is expected that a digital twin will be implemented using Python and MATLAB,
Hardware-in-the-Loop (HIL) simulations to model the complex relative dynamics of the formation, and
the GNC algorithms on a flying onboard computer.

The presented work focuses on the tasks carried out by the University of Pisa on designing Guidance,
Navigation, Control (GNC), mission management and orbit identification algorithms for multi-agent



proximity operations in lunar space. Operations in the vicinity of the Moon are characterized by highly
non-linear non-Keplerian dynamics, significant perturbations, communication delays with Earth, the
absence of GPS/GNSS, and potential lunar eclipses and communication losses.

Although the project began in December 2023 and has a duration of two years, some preliminary
results are already available:

• Model Selection and Implementation: The first result is the selection and implementation of
the most suitable model for Earth-Moon dynamics, which is highly non-linear. Several models
have been identified for designing the GNC loop. According to the literature [1], the restricted
three-body ephemeris with environmental perturbations (solar radiation pressure, higher-order
gravitational harmonics) is an effective model for describing the complex environment. For GNC
design, simpler models are selected to compute guidance, control inputs, navigation outputs, and
target orbit estimates. These models include the Circular Restricted Three-Body Problem [1],
which ensures the existence of equilibrium points around which marginally stable trajectories
(non-Keplerian periodic orbits) and stable/unstable modes can be found. Another simplified model
used for orbit identification is the Virtual Primary Encke’s method [2], which uses a two-body
approximation of the dynamics, allowing the use of well-established techniques.

• Autonomous Mission Management Strategy: A preliminary study has been conducted to ad-
dress the limited literature on autonomous mission management in space, particularly in cislunar
space. This study explores natural dynamics to save fuel. The proposed solution involves a genetic
algorithm [3] to select the best rendezvous sequence for the chaser satellite and quasi-halo orbits
for the other two vehicles, minimizing fuel expenses and maximizing the connectivity and safety
of the formation.

• Shared Rendezvous Standard: Another innovative result is the formulation of a shared ren-
dezvous standard to define the sequence of operations a chaser shall perform to approach a passive
target.

Currently, an autonomous determination algorithm is being developed based on an innovative ap-
proach combining a particle filter and the Virtual Primary Encke (VPE) method to locally identify the
partially unknown target orbit. Future work will focus on selecting and implementing robust control
algorithms for rendezvous and station-keeping and improving the state-of-the-art in performing relative
and inertial navigation for each satellite without using GPS/GNSS.
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